Intentional radiological exposure scenario evaluation by comparisons based on computer simulation
DOI:
https://doi.org/10.15392/2319-0612.2025.2862Palabras clave:
computational simulation, urban radiation release, support to decision, critical infrastructure disruptionResumen
Nuclear or radiological mass incidents represent a threat that requires sophisticated coping strategies. This study aims to contribute by presenting a dual computational modeling methodology that juxtaposes numerical and analytical models to address a specific radioactive release scenario. This methodology seeks to extend beyond the theory underlying the modeling processes, favoring decision-making, especially in the early stages of such confrontation. This investigation applied a dual-model structure based on numerical methods and analytical techniques to simulate a radiological scenario promoted by activating a radiological dispersal device (RDD). It is important to emphasize that this methodology is not limited to RDD scenarios and is being proposed for application to any external release of radioactive materials. By evaluating and comparing the results of the simulations, particularly in areas close to the release point and in shorter time intervals, it is possible to verify the most appropriate model and identify scenarios in which the two models produce convergent results. The findings highlight the importance of estimating radiation doses, suggesting that such estimates can influence the understanding of radiological risks and their dependence on local atmospheric conditions. Careful interpretation and application of such results can mitigate epidemiological risks, enhance coordination capabilities, and stimulate the development of strategic responses.
Descargas
Referencias
[1] Karam PA. Radiological and Nuclear Terrorism: Their Science, Effects, Prevention, and Recovery: Springer International Publishing; 2021.
[2] Andrade ER, Reis ALQ, Alves DF, Alves IS, Andrade EVSL, Stenders RM, et al. Urban critical infrastructure disruption after a radiological dispersive device event. Journal of Environmental Radioactivity. 2020; 222:106358.
[3] Andrade ER, Reis ALQ, Stenders RM, Vital HC, Rebello WF, Silva AX. Evaluating urban resilience in a disruptive radioactive event. Progress in Nuclear Energy. 2022; 147:104218.
[4] Pasquill F. The estimation of the dispersion of windborne material. Meteorological Magazine. 1961 90:33-491.
[5] Wang S, Li X, Fang S, Dong X, Li H, Zhang Q, et al. Validation and sensitivity study of Micro-SWIFT SPRAY against wind tunnel experiments for air dispersion modeling with both heterogeneous topography and complex building layouts. Journal of Environmental Radioactivity. 2020;222: 106341.
[6] Hanna SR, Briggs GA, Hosker J, R P. Handbook on atmospheric diffusion. United States; 1982. Contract No.: DOE/TIC-11223; ON: DE82002045 2008-02-07 NTIS, PC A06/MF A01.
[7] Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change: Wiley; 2016.
[8] ANSYS. ANSYS Fluent Tutorial Guide 2021 R1. Canonsburg, PA 15317: ANSYS; 2021.
[9] Homann SG, Aluzzi, F. HotSpot Health Physics Codes Version 3.1.2 User's Guide. CA, USA.: Lawrence Livermore National Laboratory; 2020.
[10] DOE. Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE) - ISCORS Technical Report No. 1. Office of Environmental Policy and Guidance; 2003. Report No.: DOE/EH-412/0015/0802 rev.1.
[11] IAEA. IAEA-TECDOC-870 - Methods for Estimating the Probability of Cancer from Occupational Radiation Exposure. In: Section RS, editor. Vienna: International Atomic Energy Agency 1996.
[12] Council NR. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press; 2006. 422 p.
[13] IAEA. Categorization of Radioactive Sources. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY; 2005.
[14] Ford W. Chapter 13 - Important Special Systems. In: Ford W, editor. Numerical Linear Algebra with Applications. Boston: Academic Press; 2015. p. 263-80.
[15] Curzio RC, Bonfim CES, Silva TMS, Stenders RM, Ramos de Andrade E. Dose assessment based on short-ranged computer simulation in a radioactive release event. Radioprotection. 2023;58(3):197-204.
[16] Bonfim CES, Silva VWL, Rodrigues LD, Curzio RC, Santos A, Profeta WHS, et al. Soil surface roughness impacts the risk arising from a hypothetical urban radiological dispersive device activation. Radiation Protection Dosimetry. 2023.
[17] Chen Q, Zhang Z. Prediction of particle transport in enclosed environment. China Particuology. 2005;3(6):364-72.
[18] Stockie J. The Mathematics of Atmospheric Dispersion Modeling. SIAM Review. 2012; 53:349-72.
[19] Rabi R, Oufni L. Study of radon dispersion in typical dwelling using CFD modeling combined with passive-active measurements. Radiation Physics and Chemistry. 2017; 139:40-8.
[20] Eckerman KF, Wolbarst AB, Richardson ACB. Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11.; Environmental Protection Agency, Washington, DC (USA). Office of Radiation Programs; Oak Ridge National Lab., TN (USA); 1988. Report No.: EPA-520/1-88-020; Other: ON: DE89011065; TRN: 89-013047 United States 10.2172/6294233 Other: ON: DE89011065; TRN: 89-013047 NTIS, PC A10/MF A01 - OSTI; 1. ORNL English.
[21] Caliskan Karagöz D, Saraçbası T. Robust brown-forsythe and robust modified brown-forsythe ANOVA tests under heteroscedasticity for contaminated weibull distribution. 2016; 39:17-32.
[22] Rother FC, Rebello WF, Healy MJ, Silva MM, Cabral PA, Vital HC, et al. Radiological Risk Assessment by Convergence Methodology Model in RDD Scenarios. Risk analysis: an official publication of the Society for Risk Analysis. 2016;36(11):2039-46.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Carlos Eduardo S. Bonfim, Rodrigo Carneiro Curzio, Gustavo da Gama Souza , Tercio Brum, José Carlos C. Amorim , Ubiratan de Carvalho Oliveira , Claudio Antônio Federico , Raquel Aparecida Abrahão Costa e Oliveira , Jakler Nichele , Edson Andrade

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/