Analysis of the principles of green chemistry in the radioiodination of metaiodobenzylguanidine compared to the principles already adopted for radiological protection
DOI:
https://doi.org/10.15392/2319-0612.2026.2964Palabras clave:
green chemistry, radiological protection, Radioiodination, MetaiodobenzylguanidineResumen
Environmental concerns have increasingly highlighted the importance of applying methodologies that prioritize safer waste treatments, the use of less toxic reagents, and milder synthesis conditions. In this context, radioiodinated metaiodobenzylguanidine (MIBG) stands out as a key radiopharmaceutical used in diagnostic scintigraphy and therapy of neural crest-derived tumors, such as pheochromocytoma and neuroblastoma, as well as in assessing sympathetic neuronal integrity after cardiac events. Halogenation reactions that avoid toxic reagents and hazardous conditions are essential for producing safe pharmaceutical compounds. Radioiodination, a specific type of halogenation, plays a critical role in the synthesis of radiopharmaceuticals—radioactive compounds formulated for diagnosing and treating human diseases. A major challenge in the production of radioiodinated MIBG is aligning the process with the principles of green chemistry, emphasizing the use of harmless substances and minimizing their quantities, while also meeting stringent nuclear, radiological protection, and pharmaceutical regulations. However, green chemistry considerations are often neglected in this process. This study quantitatively assesses the application of green chemistry principles to existing radioiodination methods for MIBG. The degree of compliance with each principle was expressed as a percentage. Additionally, a qualitative analysis was conducted to explore the alignment between green chemistry and radiological protection principles. Green chemistry is guided by twelve principles: Prevention, Atom Economy, Less Hazardous Chemical Syntheses, Designing Safer Chemicals, Safer Solvents and Auxiliaries, Energy Efficiency, Renewable Feedstocks, Reducing Derivatives, Catalysis, Design for Degradation, Real-Time Analysis for Pollution Prevention, and Inherently Safer Chemistry for Accident Prevention. This work examines how each principle applies to MIBG radioiodination, with some aspects also discussed in the broader context of radiopharmaceutical production. While radioiodinated MIBG complies fully with pharmaceutical requirements in its final medicinal formulation, its production currently incorporates about 68% of the green chemistry principles. As radiopharmaceutical production moves forward, greater attention should be given to eco-friendly practices. Investing time and resources into adopting green principles for MIBG radioiodination is a logical next step. This radiopharmaceutical holds well-established clinical importance, and future advances in its production should embrace sustainable, environmentally conscious methodologies.
Descargas
Referencias
[1] Adimurthy, S. et al. A new, environment friendly protocol for iodination of electron-rich aromatic compounds. Tetrahedron Letters, vol.44, p.5099-5101, 2003. DOI: https://doi.org/10.1016/S0040-4039(03)01144-4
[2] Anastas, P.T., Warner, J. Green chemistry: Theory and pratice. Oxford University Press:New York, 1998.
[3] Bray, M. et al. Radiolabeled antiviraldrugs and antibodies as virus-specific imaging probes. Antiviral Research, vol.88, p.129–142, 2010. DOI: https://doi.org/10.1016/j.antiviral.2010.08.005
[4] Carvalheira, Luciana. Desenvolvimento, otimização e validação parcial de método para determinação de pureza radioquímica da metaiodobenzilguanidina marcada com iodo 123 (123I-MIBG) / Rio de Janeiro, 2008. vi, 111f.: il. Dissertação (Mestrado em Ciências) – Universidade Federal do Rio de Janeiro, IQ/DQA, 2008.
[5] Donovan , A.C.; Valliant, J.F. A convenient solution-phase method for the preparation of meta-iodobenzylguanidine in high effective specific activity. Nuclear Medicine and Biology, vol.35 p.741–746, 2008. DOI: https://doi.org/10.1016/j.nucmedbio.2008.07.006
[6] DuBois, S.G., Matthay, K.K. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nuclear Medicine and Biology, vol.35, 2008. DOI: https://doi.org/10.1016/j.nucmedbio.2008.05.002
[7] Eckelman, W. Review of new clinical applications of radiometal labeled radiopharmaceuticals. Nuclear Medicine and Biology, doi:10.1016/j.nucmedbio.2010.12.009, 2011. DOI: https://doi.org/10.1016/j.nucmedbio.2010.12.009
[8] Eckelman, W.C., Gibson R.E. The Design of site-directed radiopharmaceuticals for use in drug discovery. In: Burns HD, Gibson R.E., Dannals R.F., Siegl P.K.S., editors. Nuclear imaging in drug discovery, development and approval. Boston: Birkhäusser; p.113 134, 1993. DOI: https://doi.org/10.1007/978-1-4684-6808-3_6
[9] Eissen, M.; Lenoir, D. Electrophilic Bromination of Alkenes: Environmental, Health and Safety Aspects of New Alternative Methods. Chemistry: A European Journal, vol.14, p.9830-9841, 2008. DOI: https://doi.org/10.1002/chem.200800462
[10] Fass, L. Imaging and cancer: a review. Molecular Oncology, vol.2, p.115-152, 2008. DOI: https://doi.org/10.1016/j.molonc.2008.04.001
[11] Goldsmith, S.J.; Vallabhajosula, S. Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Seminars in Nuclear Medicine, doi:10.1053/j.semnuclmed.2008.08.002, 2009. DOI: https://doi.org/10.1053/j.semnuclmed.2008.08.002
[12] Harari, A., Inabnet, W.B. Malignant pheochromocytoma: a review. The American Journal of Surgery, vol.201, p.693-701, 2011. DOI: https://doi.org/10.1016/j.amjsurg.2010.04.012
[13] Hunter, D. H.; Zhu, X. Polymer-suported radiopharmaceuticals: [131I]MIBG and [123I]MIBG. Journal of labeled Compounds and Radiopharmaceuticals, vol. 42, p.653 661, 1999. DOI: https://doi.org/10.1002/(SICI)1099-1344(199907)42:7<653::AID-JLCR227>3.3.CO;2-H
[14] Ishibashi, N. et al. Adverse allergic reaction to 131I MIBG. Annals of Nuclear Medicine, vol.23, p.697-699, 2009. DOI: https://doi.org/10.1007/s12149-009-0282-0
[15] Jiang, L. et al. 123I-labeled metaiodobenzylguanidine for diagnosis of neuroendocrine tumors. Reports in Medical Imaging, vol.2, p-79-89, 2009. DOI: https://doi.org/10.2147/RMI.S4529
[16] Joseph, S. et al. Neuroendocrine tumors: current recomendations for diagnosis and surgical management. Endocrinology Metabolism Clinics of North America, vol.40, p.205-231, 2011. DOI: https://doi.org/10.1016/j.ecl.2010.08.004
[17] Krzeminski, M. et al. Veterinary nuclear medicine. Nuclear Medicine Review, vol.7, no.2 p.177-182, 2004.
[18] Lambrecht, R.M. et al. Method of producing iodine-124 and meta-iodobenzylguanidine containing iodine-124. United States Patent n. 5,019,323; 1991.
[19] Lankey, R.L.; Anastas, P.T. Life-cycle approaches for assessing green chemistry technologies. Industrial & Engineering Chemistry Research, vol.41, p. 4498-4502, 2002. DOI: https://doi.org/10.1021/ie0108191
[20] Lista, L. et al. Mild and efficient iodination of aromatic and heterocyclic compounds with the NaClO2/NaI/HCl system. Tetrahedron, vol.64, p. 234-239, 2008. DOI: https://doi.org/10.1016/j.tet.2007.10.062
[21] Mairs, R J et al. Carrier-free 131I-meta-iodobenzylguanidine: comparison of production from meta-diazobenzylguanidine and from meta-trimethylsilylbenzylguanidine. Nuclear Medicine Communications, vol. 15, p. 268-274, 1994. DOI: https://doi.org/10.1097/00006231-199404000-00157
[22] McEwan, A.J., Shapiro, B., Sisson, J.C., Beierwaltes, W.H., Ackery, D.M. Radio iodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumors. Seminars in Nuclear Medicine, vol.15, no. 2, p. 132–141, 1985. DOI: https://doi.org/10.1016/S0001-2998(85)80022-2
[23] Mertens, J.; Gysemans, M. Cu+1 assisted nucleophilic exchange radiohalogenation: application and mechanistic approach. New trends in radiopharmaceutical synthesis, quality assurance and regulatory control (Emram A. M., Ed.), p.53. Plenum press, New York, 1991. DOI: https://doi.org/10.1007/978-1-4899-0626-7_8
[24] Moon, M.E. et al. An expeditious and environmentally benign preparation of aryl halides from aryl amines by solvent-free grinding. Tetrahedron Letters, vol.51, p.6769-6771, 2010. DOI: https://doi.org/10.1016/j.tetlet.2010.10.099
[25] Pavlinac, J. et al. “Green” iodination of dimethoxy- and trimethoxy-substituted aromatic compounds using an iodine-hydrogen peroxide combination in water. Synthesis, no.15, p.2603-2607, 2006.
[26] Pavlinac, J. et al. Halogenation of organic compounds in ionic liquids. Tetrahedron, vol.65, p.5625-5662, 2009. DOI: https://doi.org/10.1016/j.tet.2009.04.092
[27] Pavlinac, J., Zupan, M., Stavber, S. Green iodination of dimethoxy- and trimethoxy substituted aromatic compounds using an iodine-hydrogen peroxide combination in water. Synthesis, no.15, p.2603-2607, 2006. DOI: https://doi.org/10.1055/s-2006-942470
[28] Podgorsek, A.; Zupan, M.; Iskra, J. Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxyde. Angewandte Chemie International, vol.48, p.8424-8450, 2009. DOI: https://doi.org/10.1002/anie.200901223
[29] Pourali, A.R.; Ghanei, M. Direct iodination of aromatic compounds with polyvinylpyrrolidone supported hydrogen peroxide (PVP-H2O2) and potassium iodide or molecular iodine. Chinese Journal of Chemistry, vol.24, 1077-1079, 2006. DOI: https://doi.org/10.1002/cjoc.200690201
[30] Raffel, D.M., Wieland, D.M. Development of mIBG as a cardiac innervation imaging agent. Journal of the American College of Cardiology: Cardiovascular imaging, vol.3, no.1, 2010. DOI: https://doi.org/10.1016/j.jcmg.2009.09.015
[31] Reddy, K.S.K. et al. Iodination of aromatic compounds using potassium iodide and hydrogen peroxide. Synthetic Communications, vol.38, p.3894-3902, 2008. DOI: https://doi.org/10.1080/00397910802238767
[32] Rossouw, D.D., Macheli, L. Large-scale synthesis of no-carrier-added [123I]mIBG, using two different stannylated precursors. Journal of Labelled Compounds and Radiopharmaceuticals, vol.52, p.499–503, 2009. DOI: https://doi.org/10.1002/jlcr.1668
[33] SAHA, G. B.; Fundamentals of Nuclear Pharmacy. 6th ed. United States of America: Springer. 2010. DOI: https://doi.org/10.1007/978-1-4419-5860-0
[34] Samnick, S.; Kirsch, C.M. A simple and rapid routine preparation of no-carrier added meta-I-123- and I-131-iodobenzylguanidine (I-123-MIBG and I-131-MIBG) for clinical nuclear medicine applications. Nuklearmedizin, vol.38, p.292-296, 1999. DOI: https://doi.org/10.1055/s-0038-1632223
[35] Schäfer, H.J. Contributions of organic electrosynthesis to green chemistry. Comptes Rendus Chimie, doi:10.1016/j.crci.2011.01.002, 2011. DOI: https://doi.org/10.1016/j.crci.2011.01.002
[36] Silberstein, E.B. et al. Prevalence of adverse reactions in Nuclear Medicine. Journal of Nuclear Medicine, vol.37, p.185-192, 1996.
[37] Vaidyanathan, G. et al, A tin precursor for the synthesis of no carrier added *I MIBG and 211At MABG. Journal of labelled compounds and Radiopharmaceuticals, vol.50, p.177-182, 2007. DOI: https://doi.org/10.1002/jlcr.1243
[38] Vaidyanathan, G. Meta-iodobenzylguanidines and analogues: chemistry and biology. Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol.52, p.351-368, 2008.
[39] Vaidyanathan, G.; Zalutsky, M. R. No-carrier-added synthesis of meta-[131I]iodobenzylguanidine. Applied Radiation and Isotopes. vol. 44, p. 621-628, 1993. DOI: https://doi.org/10.1016/0969-8043(93)90179-E
[40] Wadsak, W.; Mitterhauser, M. Basics and principles of radiopharmaceuticals for PET/CT. European Journal of Radiology, vol.73, p.461-469, 2010. DOI: https://doi.org/10.1016/j.ejrad.2009.12.022
[41] Wafelman, A. R. et al. Synthesis, radiolabelling and stability of radioiodinated m iodobenzylguanidine, a review. Applied Radiation and Isotopes. vol.45, p. 997-1007, 1994. DOI: https://doi.org/10.1016/0969-8043(94)90168-6
[42] Westera, G. Draft guidelines for radiopharmacy. European Journal of Nuclear Medicine and Molecular Imaging, vol.30, p.63-72, 2003. DOI: https://doi.org/10.1007/s00259-003-1291-1
[43] Yu, S. Review of 18F-FDG synthesis and quality control. Biomedical Imaging and Intervention Journal, doi: 10.2349/biij.2.4.e57, 2006. DOI: https://doi.org/10.2349/biij.2.4.e57
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2026 Antonio Pedro Junior, Eliene Bezerra Simão da Silva, Francisco José de Oliveira Ferreira, Rogerio Chaffin Nunes, Karine Rocha Ramos da Silva, Larissa Cunha Pinheiro, Fellipe Souza da Silva, Luciano Moreira Lima, Adriana Marques, Cintia Andrade Custódio, Luciana Carvalheira

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/

















