Solution for the Multigroup Neutron Space Kinetics Equations by Source Iterative Method
DOI:
https://doi.org/10.15392/bjrs.v9i2A.731Palabras clave:
Neutron Diffusion Equation, Source Iterative Method, Laplace Transform, Stehfest Algorithm, Polinomial Interpola-tion.Resumen
In this work, we used a modified Picard’s method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a first order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform by Stehfest method. We present numerical simulations and comparisons with available results in literature.
Descargas
Referencias
WILLERT, J.; TAITANO, T; KNOLL, D. Leveraging anderson acceleration for improved conver-gence of iterative solutions to transport systems. Journal of Computational Physics, v. 273, p. 122-132, 2014.
ADAMS, M.; LARSEN, E. Fast iterative methods for discrete ordinates particle transport calcula-tions. Progress in Nuclear Energy, v. 40, p. 3-159, 2002.
DANIELLA, M. Métodos de Aceleração para a Solução da Equação de Transporte. 2017. Tese de Doutorado - PPGMAP/UFRGS, Porto Alegre/RS.
ZANETTE, R. Solução da Equação de Difusão de Nêutrons Multigrupo Multirregião Estacionária em Geometria Cartesiana pelo Método da Potência via Fronteiras Fictícias. 2017. Dissertação de Mestrado - PPGMAT/UFPEL, Pelotas/RS.
NAHLA, A.; et al. Numerical Techniques for the Neutron Diffusion Equations in the Nuclear Reac-tors. Adv. Studies Theor. Physics, v. 6, p.649-664, 2012.
CEOLIN, C.; et al. On the analytical Solution of the multi group neutron diffusion kinetic equation in a multlayered slab. International Nuclear Atlantic Conference, 2011, Belo Horizonte, MG, Bra-zil, October 24 to October 28 (2011).
CORNO, S. et al. Analytical approach to the neutron kinetics of the non-homogeneous reactor. Progress in Nuclear Energy, v. 50, p. 847-865, 2008.
HASSANZADEH, H.; POOLDADI-DARVISH, M. Comparison of different numerical Laplace inversion methods for engineering applications. Applied mathematics and computation, v. 189, p. 1966-1981, 2007.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/