Proposta de utilização de redes neurais feedforward multicamadas para a otimização de padrões de recarga do combustível em um reator PWR
DOI:
https://doi.org/10.15392/bjrs.v7i3A.834Palabras clave:
Reator PWR, Redes neurais artificiais, Carga de combustívelResumen
O gerenciamento de recarga de combustível em um reator de potência tem como principal foco o padrão de recarga no núcleo de modo a alcançar melhor rendimento no ciclo observando todos os parâmetros de segurança adotados. Neste artigo apresentamos a estratégia de um algoritmo baseado em redes neurais artificiais que poderia ser usado para otimizar a recarga de combustível num reator nuclear. A ideia é apresentar uma metodologia baseada em rede neural feedforward multicamadas baseada em neurônios multi-valorados, que poderá ser usada para desenvolver uma metodologia capaz de escolher as melhores combinações que satisfaçam o fator de pico de potência radial e maximizem o fator de multiplicação efetivo no início do ciclo, e também satisfaçam a relação de potência crítica mínima e taxa máxima de geração de calor no final do ciclo.
Descargas
Referencias
H. G. KIM, S. H. CHANG, AND B. H. LEE, Optimal Fuel Loading Pattern Design Using an Artificial Neural Network and a Fuzzy Rule-Based System, Nuclear Science and Engineering, v. 115, p. 152–163, 1993.
R. CARMONA, C. MARTIN-DEL-CAMPO, I. OROPEZA, AND J.-L. FRANOIS, Genetic algorithm approach for radial fuel lattice optimization in BWRS, American Nuclear Society, vol. 1, p. 323-333, 2009.
E. F. FARIA AND C. PEREIRA, Nuclear fuel loading pattern optimisation using a neural network, Annals of Nuclear Energy, v. 30, p. 603–613, 2003.
C. LIN, J.-I. YANG, K.-J. LIN, AND Z.-D. WANG, Pressurized Water Reactor Loading Pattern Design Using the Simple Tabu Search, Nuclear Science and Engineering, v. 129, p. 61–71, 1998.
T. ŠMUC, D. PEVEC, AND B. PETROVIC, Annealing strategies for loading pattern optimization, Annals of nuclear energy, v. 21, p. 325–336, 1994.
I. AIZENBERG AND C. MORAGA, Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm, Soft Computing, v. 11, p. 169–183, 2007.
E. M. AZOFF, Neural network time series forecasting of financial markets. John Wiley & Sons, Inc., 1994.
M. T. HAGAN, H. B. DEMUTH, M. H. BEALE, AND O. DE JESUS, Neural network design, v. 20. Pws Pub. Boston, 1996.
J. J. ORTIZ AND I. REQUENA, Using a multi-state recurrent neural network to optimize loading patterns in BWRs, Annals of Nuclear Energy, v. 31, p. 789–803, 2004.
M. HLAVÁČEK, Multilayer feedforward neural networks based on multi-valued neurons, PhD Thesis, Masarykova univerzita, Fakulta informatiky, 2014.
DOWNAR, T. et al., PARCS v2.7 U.S. NRC Core Neutronics Simulator User Manual, School of Nuclear Engineering Purdue University, 2006.
M. HLAVACEK, Machine learning tool: simulator of multi-layered neural network (like MLP) with multi-valued neurons. - MiraHead/mlmvn. 2018.
WIMSD-5B, 2007 - RSICC Computer Code Collection WIMSD-5B.12 – Deterministic
Code System for Reactor-Lattice Calculations – Oak Ridg National Laboratory, 2007.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2019 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/