Plastic bottle caps as radiation detectors for high gamma radiation doses
DOI:
https://doi.org/10.15392/bjrs.v10i2A.1761Palavras-chave:
Plastic samples, Radiation dosimetry, PCR analyses, FTIR techniqueResumo
Dosimetric evaluation is indicated for material characterization seeking to identify possible applications; still, proper preprocessing techniques are critical features of this process. This work aimed to determine the linearity response of plastic samples irradiated with gamma rays using the Fourier Transform Infrared (FTIR) measurements. The plastic samples were analyzed using Derivatives and Principal Component Analysis (PCA) methods. They applied linear and Principal Component Regression (PCR) methods to obtain linearity. The methods obtained good results for linearity and also showed the evolution of each technique. In conclusion, the results indicate that the applied methods can be useful in radiation physics and for plastic samples as interesting potential radiation detectors.
Downloads
Referências
LEE, C.K.; WONG, H.K.; LEUNG, Y.L. Non-linearity of pre-dose response and its effects on TL dating. Radiation Measurements 2009; 44:215–22.
MADDEN, L.; ARCHER, J.; LI, E.; JELEN, U.; DONG, B.; HOLLOWAY, L.; et al. MRI-LINAC beam profile measurements using a plastic scintillation dosimeter. Physica Medica 2020;73:111–6.
POSAR, J.A.; DAVIS, J.; BRACE, O.; SELLIN, P.; GRIFFITH, M.J.; DHEZ, O.; et al. Characterization of a plastic dosimeter based on organic semiconductor photodiodes and scintil-lator. Physics and Imaging in Radiation Oncology 2020; 14:48–52.
SOHRABPOUR, M.; KAZEMI, A.A.; MOUSAVI, H.; SOLATI, K. Temperature response of a number of plastic dosimeters for radiation processing. Radiation Physics and Chemistry 1993; 42:783–7.
WUU, C.S.; XU, Y. 3-D dosimetry with optical CT scanning of polymer gels and radiochro-mic plastic dosimeter. Radiation Measurements. 2011, 46, 1903–7.
IHANTOLA, S.; HOLM, P.; JUTILA, H.; PERÄJÄRVI, K. Method for the diagnosis of aged plastic radiation portal monitors. Applied Radiation and Isotopes 2020; 160:109110.
SERRANO, M.A.; MORENO, J.C. Spectral transmission of solar radiation by plastic and glass materials. Journal of Photochemistry and Photobiology B: Biology 2020; 208:111894.
KOVACEVIC, M.S.; SAVOVIC, S.; DJORDJEVICH, A.; BAJIC, J.; STUPAR, D.; KO-VACEVIC, M.; et al. Measurements of growth and decay of radiation induced attenuation du-ring the irradiation and recovery of plastic optical fibres. Optics and Laser Technology 2013; 47:148–51.
AMBROZOVA, I.; BRABCOVA, K.P.; KUBANCAK, J.; ŠLEGL, J.; TOLOCHEK, R.V.; et al. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors. Radiation Measurements 2017; 106:262–6.
SUHRHOFF, T.J.; SCHOLZ-BÖTTCHER, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab ex-periment. Marine Pollution Bulletin 2016; 102:84–94.
SADOOGHI, P. Transient thermal radiation heat transfer in a reinforced plastic coating with anisotropic optical properties. International Journal of Heat and Mass Transfer 2018; 123:432–6.
KARINA, K.M.; NAPOLITANO, C.M.; BORRELY, S.I. Gamma radiation effects in packa-ging for sterilization of health products and their constituents paper and plastic film. Radiation Physics and Chemistry 2018; 142:23–8.
KIM, D.; LEE, S.; PARK, J.; SON, J.; KIM, T.H.; KIM, Y.H.; et al. Performance of 3D printed plastic scintillators for gamma-ray detection. Nuclear Engineering and Technology 2020, 243, 34-39.
Tajudin SM, Namito Y, Sanami T, Hirayama H. Response of plastic scintillator to gamma sources. Applied Radiation and Isotopes 2020; 159:109086.
AYDIA, M.I.; HIEKAL, A.S.; EL-AZONY, K.M.; MOHAMED, T.Y.; SHAHIN, I.M. Pre-paration and characterization of poly nano-cerium chloride for 99Mo production based on neu-tron activation reactions. Applied Radiation and Isotopes 2020; 163:109211.
KARELIN, A.I.; KAYUMOV, R.R.; DOBROVOLSKY, Y.A. FTIR spectroscopic study of the interaction between NH 4+ and DMSO in Nafion. Spectrochimica Acta - Part A: Molecu-lar and Biomolecular Spectroscopy 2019; 215:381–8.
KAUR, S.; SINGH, S.; SINGH, L. Opto-electric and physio-chemical changes in oxygen ion irradiated natural Vermiculite mineral. Applied Radiation and Isotopes 2019; 148:7–12.
OLIVEIRA, L.N.; SCHIMIDT, F.; ANTONIO, P.L.; ANDREETA, M.R.B.; CALDAS, L.V.E. Lithium diborate glass for high-dose dosimetry using the UV-Vis and FTIR spectro-photometry techniques. Radiation Measurements 2017; 106:225–8.
RAMKUMAR, P.L.; PANCHAL, Y.; PANCHAL, D.; GUPTA, N. Characterization of LLDPE/coir blend using FTIR technique. Materials Today: Proceedings 2020, 1, 1-5.
RIHAWY, M.S.; ALZIER, A.; ALLAF, A.W. Investigation of chloramphenicol release from PVA/CMC/HEA hydrogel using ion beam analysis, UV and FTIR techniques. Applied Ra-diation and Isotopes 2019; 153:108806.
BALAGHI, S.; GHAL-EH, N.; MOHAMMADI, A.; VEGA-CARRILLO, H.R. A neutron scattering soil moisture measurement system with a linear response. Applied Radiation and Isotopes 2018; 142:167–72.
DATZ, H.; HOROWITZ, Y.S.; OSTER, L.; MARGALIOT, M. Critical dose threshold for TL dose response non-linearity: Dependence on the method of analysis: It’s not only the data. Ra-diation Measurements 2011; 46, 1444–7.
POMME, S.; PAEPEN, J.; VAN AMMEL, R. Linearity check of an ionisation chamber through 99 mTc half-life measurements. Applied Radiation and Isotopes 2018; 140:171–8.
SANI, S.F.A.; OTHMAN, M.H.U.; ALQAHTANI, A.; NAZERI, A.A.Z.A.; ALMUGREN, K.S.; UNG, N.M.; et al. Passive dosimetry of electron irradiated borosilicate glass slides. Ra-diation Physics and Chemistry 2020; 108903.
ZAKARIA, Z.; AZIZ, M.Z.A.; ISHAK, N.H.; SUPPIAH, S.; BRADLEY, D.A.; NOOR, N.M. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped opti-cal fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 2020; 166:108487.
CHEN, S.J.; PENG, C.J.; CHEN, Y.C.; HWANG, Y.R.; LAI, Y.S.; FAN, S.Z.; et al. Com-parison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia. Computer Methods and Programs in Biomedicine 2016; 137:77–85.
SANCHEZ ROJAS, F.; BOSCH OJEDA, C. Recent development in derivative ultravio-let/visible absorption spectrophotometry: 2004-2008. A review. Analytica Chimica Acta 2009; 635:22–44.
PENG, B.; GAO, C.; ZHOU, Y.; GUO, Y. Temperature-compensated ppb-level sulfur dioxide detection system based on fourier transform ultraviolet differential optical absorption spectrum method. Sensors and Actuators, B: Chemical 2020; 312:127988.
FOLCH-FORTUNY, A.; ARTEAGA, F.; FERRER, A. PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems 2015; 146:77–88.
LEVADA, A.L.M. Parametric PCA for unsupervised metric learning. Pattern Recognition Letters 2020; 135:425–30.
GHOLIPOUR PEYVANDI, R.; ISLAMI RAD, S.Z. Precise prediction of radiation interac-tion position in plastic rod scintillators using a fast and simple technique: Artificial neural net-work. Nuclear Engineering and Technology 2018; 50:1154–9.
AMIT, J.R.; KUMARI, S.; KELLY, S.; CANNAVAN, A.; SINGH, D.K. Rapid detection of pure coconut oil adulteration with fried coconut oil using ATR-FTIR spectroscopy coupled with multivariate regression modelling. LWT 2020; 125:109250.
BATISTA BRAGA, J.W.; ALLEGRINI, F.; OLIVIERI, A.C. Maximum likelihood unfolded principal component regression with residual bilinearization (MLU-PCR/RBL) for second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems 2017; 170:51–7.
LI, X.; ZHANG, C.; BEHRENS, H.; HOLTZ F. Calculating biotite formula from electron mi-croprobe analysis data using a machine learning method based on principal components regres-sion. Lithos 2020; 356–357:105371.
SOLANKI, R.B.; KULKARNI, H.D.; SINGH, S.; VERMA, A.K.; VARDE, P. Optimization of regression model using principal component regression method in passive system reliability assessment. Progress in Nuclear Energy 2018; 103:126–34.
URBANSKI, P. Principal component and partial least squares regressions in the calibration of nucleonic gauges. Applied Radiation and Isotopes 1994; 45:659–67.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2022 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/