Dosimetric effectiveness in implants with distinct ho166-seed distributions in a prostate model
DOI:
https://doi.org/10.15392/bjrs.v7i2A.603Palavras-chave:
prostate cancer, brachytherapy, Ho-166 seeds.Resumo
Currently, there is a need to produce new therapeutic techniques for the treatment of prostate tumors, considering the high incidence of the disease and significant morbidity rates associated with surgery and radiotherapy. Simulations in brachytherapy produce essential information about the efficiency and dosimetric efficacy compared to other techniques. This study estimated the efficiency of dosimetry by parameters of merit generated from volumetric distributions of absorbed doses simulating two spatial distributions of Ho-166 seeds in a prostate model. A computer voxel model was developed, using the SISCODES (Computational System for Dosimetry by Neutrons and Photons by Stochastic Methods applied to radiology and radiotherapy) code. The virtual model reproduced a cubic box, filled with muscle equivalent tissue (TE), in which a 5-cm diameter sphere with TE-prostate was positioned 2-cm from the air-interface. Two Ho-166 seed distributions were employed with distinct pitches: 9 and 10 mm, with same distance between seed of 8mm in a fillet (needle). The MCNP5 code generated the energy deposited per unit mass in each voxel .The spatial dose distributions were obtained for each of the seed distributions. The following parameters-of-merit were evaluated: maximum dose values and histograms. The parameters were compared between the two simulated groups. It was possible to evaluate the most appropriate distribution to the prostate brachytherapy, which has been shown to be a function of the injected seed activity.Downloads
Referências
PODGORSAK, E. B. Radiation oncology physics a handbook for teachers and students, In-ternational Atomic Energy Agency, Vienna, 2005.
INCA, Instituto Nacional do Câncer. INCA BR, 2017. Available at: <http://www2.inca.gov.br/wps/wcm/connect/cancer/site/oquee>. Last accessed: 11, July. 2017.
GRIMM P.D.; BLASKO J.C.; SYLVESTER J.E., M.D.; MEIER, R.M.; CAVANAGH W. 10-year biochemical (prostate-specific antigen) control of Prostate cancer with 125-I brachytherapy, Int J Radiat Oncol Biol Phys, v. 51, p. 31-40, 2001.
NOGUEIRA L.B.; CAMPOS T.P.R. Nuclear chatacterization and investigation of radioactive bioglass seed surfaces for brachytherapy via scanning electron microscopy. J of Sol-Gel Science and Technology, v. 58, p. 215-258, 2011.
NOGUEIRA, L.B.; CAMPOS, T.P.R. Radiological response of ceramic and polymeric devices for breast brachytherapy. Applied Radiation and Isotopes, v.70, p. 663-669, 2012.
NOGUEIRA L.B.; CAMPOS T.P.R. Synthesis, chemical characterization and radiological re-sponse of Ho and HoZr bioglass seeds. J of Sol-Gel Science and Technology, v. 77, p. 688-698, 2016.
VALENTE, E.S.; CAMPOS, T.P.R. Gamma spectrometry and chemical characterization of ce-ramic seeds with samarium-153 and holmium-166 for brachytherapy proposal, Applied Radiation and Isotopes, v.68, p. 2157-2162, 2010.
VALENTE, E.S.; CUPERSCHMID, E.M.; CAMPOS, T.P.R. Evaluation of hela cell lineage re-sponse to β radiation from Holmium-166 embedded in ceramic seeds. Brazilian Archives of Biol-ogy and Technology, v. 54, p. 957-964, 2011.
DINIZ, M.F.; FERREIRA, D.M.; WANDERSON, G.L.; PEDROSA, M.L.; SILVA, M.E.; ARAUJO, S.A.; SAMPAIO, K.H.; CAMPOS, T.P.R.; SIQUEIRA, S. L. Biodegradable seeds of holmium don’t change neurological function after implant in brain of rats. Reports of Practical Oncology & Radiotherapy, v. 22, p. 319-326, 2017.
CAMPOS, T.P.R.; NOGUEIRA, L.B.; TRINDADE, B.; CUPERSCHMID, E.M. Dosimetric intercomparison of permanent Ho-166 seed's implants and HDR Ir-192 brachytherapy in breast cancer. Reports of Practical Oncology & Radiotherapy, v. 21, p. 240-249, 2016.
LNHB, Laboratoire National Henri Becquerel. France, 2017. Available at: <http://www.nucleide.org/DDEP_WG/Nuclides/Ho-166_tables.pdf>. Last accessed: 27, May. 2017.
PEREZ, C.A. Technical Basis of Radiation Therapy, Springer, 2006. p. 275.
BENI, M. S.; NG C.Y.P, KRSTIC D., NIKEZIC D., YU K.N. Conversion coefficients for de-termination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP. PloS one, 12.3 2017
TAGHAVI, R.; MIRZAEIET H. R.; AGHAMIRI S.M.R.; HAJIAN P. Calculating the absorbed dose by thyroid in breast cancer radiotherapy using MCNP-4C code. Radiation Physics and Chemistry, v.130, p. 12-14, 2017.
HADAD, K.; MAHDI S.; BANAFSHEH Z. Voxel dosimetry: Comparison of MCNPX and DOSXYZnrc Monte Carlo codes in patient specific phantom calculations. Technology and Health Care, v.25, p. 29-35, 2017.
PAPPAS, E. P., ZOROS E., MOUTSATSOS, A., PEPPPA, V., ZOURARI, K., KARAISKO, P., PAPAGIANNIS, P. On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning. Physics in Medicine and Biology, v. 62, p. 41-60, 2017.
MOUNTRIS, K. A., BERT, J., NOAILLY, J., AGUILERA, R.A., VALERI, A., PRADIER, O., SCHICK, U., PROMAYON, E., BALLESTER, M.A.G. Modeling the impact of prostate edema on LDR brachytherapy: a Monte Carlo dosimetry study based on a 3D biphasic finite element biomechanical model. Physics in Medicine and Biology, v.62, p. 2087-2102, 2017.
FERREIRA, C. C.; GALVÃO, L. A.; VEIRA, J. W.; MAIA, A. F. Validação de um modelo computacional de exposição para dosimetria em tomografia computadorizada. Revista Brasileira de Física Médica, v. 4 , p. 19-22 ,2010.
X-5 MONTE CARLO TEAM. MCNP – A general Monte Carlo N-Particle transport code, v. 5.: Los Alamos National Laboratory, Los Alamos, NM, 2003.
TRINDADE, B. M. Desenvolvimento de sistema computacional para dosimetria em radio-terapia por nêutrons e fótons baseado em método estocástico SISCODES. Belo Horizonte, MG: Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, 2004.
TRINDADE, B. M.; CHRISTOVÃO, M. T.; TRINDADE, D. F. M. ; FALCÃO, P. L. ; CAM-POS, T. P. R. . Comparative dosimetry of prostate brachytherapy with I-125 and Pd-103 seeds via SISCODES/MCNP. Radiologia Brasileira, v. 45, p. 267-272, 2012.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/