EVALUATION OF ITERATIVE ALGORITHMS FOR TOMOGRAPHY IMAGE RECONSTRUCTION
DOI:
https://doi.org/10.15392/bjrs.v7i2A.660Palavras-chave:
Iterative Algorithms, Quality Evaluation, Industrial TomographyResumo
The greatest impact of the tomography technology currently occurs in medicine. The success is due to the fact that human body presents standardized dimensions with well-established composition. These conditions are not found in industrial objects. In industry, there is a great deal of interest in using the tomography in order to know the inner part of (i) manufactured industrial objects or (ii) the machines and their means of production. In these cases, the purpose of the tomography is: (a) to control the quality of the final product and (b) to optimize the production, contributing to the pilot phase of the projects and analyzing the quality of the means of production. This scan system is a non-destructive, efficient and fast method for providing sectional images of industrial objects and it is able to show the dynamic processes and the dispersion of the materials structures within these objects. In this context, it is important that the reconstructed image may present a great spatial resolution with a satisfactory temporal resolution. Thus, the algorithm to reconstruct the images has to meet these requirements. This work consists in the analysis of three different iterative algorithm methods, namely the Maximum Likelihood Estimation Method (MLEM), the Maximum Likelihood Transmitted Method (MLTR) and the Simultaneous Iterative Reconstruction Method (SIRT. The analyses involved the measurement of the contrast to noise ratio (CNR), the root mean square error (RMSE) and the Modulation Transfer Function (MTF),in order to know which algorithm fits the conditions to optimize the system better. The algorithms and the image quality analyses were performed by Matlab® 2013b.
Downloads
Referências
CHAOUKI, J, LARACHI, F, DUDUKOVIC, M.P. Non-Invasive Monitoring of Multiphase Flows. In: CHAOUKI, J, LARACHI, F, DUDUKOVIC, M.P Computer-assisted gamma and X-ray tomography: Application to multiphase flow In Non-Invasive Monitoring of Multi-phase Flows, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1997; p 47 - 97.
MESQUITA, C. H.; VASQUEZ, P. A. S.; HAMADA, M. M. Multi-source third generation com-puted tomography for industrial multiphase flows applications. In: IEEE Nuclear Science Sym-posium Conference Record, 2011.
MESQUITA, C. H.; DANTAS, C.R., COSTA, F.E.; CARVALHO, D.V.S.; MADI, T. F; VASQUEZ, P. A. S.; HAMADA, M. M. Development of a Fourth Generation Industrial Tomog-raphy for Multiphase Systems Analysis. In: IEEE Nuclear Science Symposium Conference Record, p. 19-23, 2010.
KUMAR, S. B.; DUDUKOVIC, M. P. Gas holdup in bubble columns at elevated pressure via computed tomography. Int. J. Multiphase Flows, vol. 27, p.929-946, 2001.
ISMAILA; GAMIOG, J. C. Tomography for multi-phase flow measurement in the oil indus-try. Flow Measurement and Instrumentation, vol. 16, p. 145-155, 2005.
VASQUEZ, P.A.S.; MESQUITA, C. H.; HAMADA, M. M. Methodological Analysis of Gam-ma Tomography System for Large Random Packed Columns. Applied Radiation and Iso-topes, v. 68, p. 658-661, 2010.
IAEA-TECDOC-1589 Industrial Process Gamma Tomography, Viena, 2008
CHAOUKI, J.; LARACHI, F.; DUDUKOVIC, M. Noninvasive Tomographic and Velocimetry Monitoring of Multiphase Flows. Industrial & Engineering Chemistry Research, v. 36, p. 4476-4503, 1997.
JOHANSEN, G. A.; JACKSON, P. Radioisotope Gauges for Industrial Process Measure-ments. John Wiley & Sons, 2004.
BUSHBERG, J.T., SEIBERT, J.A., LEIDHOLDT, E. M., BOONE, J.M. The essential physics of medical imaging. 3rd ed, Philadelphia, Lippicott Willians & Wilkins, 2001.
CALVO, W. A. P.; HAMADA, M. M; SPRENGER, F. E.; VASQUEZ, P. A. S.; RELA, P. R.; MARTINS, J. F. T.; PEREIRA, J. C. S. M.; OMI, N. M.; MESQUITA, C. H., Gamma-ray com-puted tomography scanners for applications in multiphase system columns. Nukleonika; v. 54, p. 129-133, 2009.
MESQUITA, C.H, VELO A.F., CARVALHO D.V.S., MARTINS, J.F.T., HAMADA, M.M. Industrial tomography using three different gamma ray. Flow measurement and instrumenta-tion, v. 47, p. 1-9, 2016.
MESQUITA, C.H., CARVALHO, D.V.S., KIRITA, R., SALAVDOR, P.A.V., HAMADA, M.M. Gas–liquid distribution in a bubble column using industrial gamma-ray computed tomography. Radiation Physics and Chemistry, v. 95, p. 396-400, 2014.
VELO, A.F., CARVALHO, D.V.S., HAMADA, M.M. Liquid Distribution and Holdup in the Random Packed Column. Flow measurement and instrumentation. (in press).
MAAD R., Design Optimization of High Speed Gamma-Ray Tomography. A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics. Department of Physics and Technology University of Bergen Norway, 2009.
VELO A.F, HAMADA M.M., CARVALHO D.V.S., MARTINS J.F.T, MESQUITA C.H. A portable tomography system with seventy detectors and five gamma-ray sources in fan beam geometry simulated by Monte Carlo method. Flow measurement and instrumentation, v. 53, p. 89-94, 2017.
SMITH, STEVEN W. The scientist and engineer's guide to digital signal processing. 2nd ed, San Diego, California Technical Publishing, 1999.
CHRISTIANSON O., CHEN, J. J.S., SAIPRASAD G., FILLIBEN, J.J, PESKIN A., TRIMBLE, C., SEIGEL, E L., SAMEI, E., An improved index of image quality for task-based performance of CT iterative reconstruction across three commercial implementations. Radiology. v. 275, p. 725-734, 2015.
RICHARD S.L, HUSARIK D.B., YADAVA G., MURPHY S.N., SAMEI E. Towards task-based assessment of CT performance: System and object MTF across different reconstruc-tion algorithms. Medical. Physics, v. 39, p. 4115 – 4122, 2012.
SAMEI E., FLYNN M.J., REIMANN D.A. A method for measuring the pre-sampled MTF of digital radiographic systems using an edge test device. Medical Physics, v. 25, p. 102–113, 1998.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/