A comparison between approximate solutions of the Bethe equation for clinical-energy-range proton beams
DOI:
https://doi.org/10.15392/bjrs.v10i2.1821Palavras-chave:
protontherapy, Monte carlo simulation, Bethe equationResumo
Proton therapy is an interesting alternative to conventional radiotherapy, especially for treating localized tumors near important and/or sensitive parts of the human body. Protons, due to their electric charge and mass, interact with the propagating media in such a way that a well localized maximum - known as the Bragg peak - is observed if a depth dose deposition curve is plotted. Since the Bragg peak location depends on the initial proton energy beam, by adjusting this parameter it can be placed over the tumor to be treated. In addition, because the dose deposition goes to zero right after this peak, the health tissue after the tumor is spared if proton therapy is adopted. However, despite the aforementioned advantages, many issues prevent a wider adoption of proton therapy over radiotherapy. In addition to the very high implementation cost, unsolved technical issues, such as, the uncertainty in the proton beam range within the medium, or the correct dose prediction at the Bragg peak, must be addressed. This research aims to investigate the validity of theoretical approximations for the solution of Bethe equation. Such approaches are compared to results from Monte Carlo simulations, executed with the MCNPX code, and reference values from the literature as well for the proton beam range and the energy deposition in the medium. A parameter is proposed and adopted to quantify the global difference between the theoretical approximations evaluated in this work with respect to the Monte Carlo simulation results.
Downloads
Referências
WILSON, R. R., Radiological Use of Fast Protons. Radiology, [s.l.], v. 47, n. 5, p.487-491, nov. 1946. Radiological Society of North America (RSNA).
BRAGG, W. H., KLEEMAN, R. On the alpha particles of radium, and their loss of range in passing through various atoms and molecules. Philos Mag. 1905;S.6:318–340.
ZINDLER, J. D., THOMAS, C. R., HAHN, S. M., HOFFMANN, A. L., TROOST, E. G. C., & LAMBIN, P. (2015). Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription. Journal of the National Cancer Institute, 108(2), djv305. doi:10.1093/jnci/djv305
DURANTE, M., PAGANETTI, H. Nuclear physics in particle therapy: a review. Reports On Progress In Physics, [s.l.], v. 79, n. 9, 096702, 19 ago. 2016. IOP Publishing.
BROWN, A., SUIT, H., The centenary of the discovery of the Bragg peak. Radiotherapy and Oncology, [s.l.], v. 73, n. 3, p. 265-268, dez 2004. Elsevier BV.
LIAO, L.; Lim, G.; Zhang, X., A Molecular Dynamics Approach for Optimizing Beam Intensities in IMPT Treatment Planning. v. 7, n. 9, p. 2130-2047. 2019. Journal of Applied Mathematics and Physics.
NEWHAUSER, W. D., ZHANG, R., The physics of proton therapy. Physics In Medicine And Biology, [s.l.], v. 60, n. 8, p.155-209, 24 mar. 2015. IOP Publishing.
RUTHERFORD, E., The Scattering of α and β Particles by Matter and the Structure of the Atom. Philos. Mag., vol 6, pp.21, 1909.
BOHR, N., On the Quantum theory of radiation and the structure of the atom. Philosophical Magazine Series 6, v. 30,, n. 177, 1915.
BETHE, H., Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Annalen der Physik, v. 397, n. 3, p. 325-400, 1930.
BLOCH, F., Zur Bremsung bewegter Teilchen beim Durchgang durch Materie. Annalen der Physik, v. 408, n. 33, 1933.
FANO, U., Penetration of Protons, Alpha Particles and Mesons. Annual Review of Nuclear Science, v. 13, n. 1, p. 1-66, dez. 1963.
ZIEGLER, J. F., Stopping of Energetic Light Ions in Elemental Matter. Journal of Applied Physics, v. 85, n. 3, p. 1249-1272, 1999. American Institute of Physics.
Paganetti, H. (2012). Range uncertainties in proton therapy and the role of Monte Carlo simulations. Physics in Medicine and Biology, 57(11), R99–R117. doi:10.1088/0031-9155/57/11/r99
GRIMES, D. R.; WARREN, D. R.; PARTRIDGE, M. An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range. Scientific Reports, [s.l.], v. 7, n. 1, 29 ago. 2017. Springer Nature.
Yoriyaz, H., Branco, I. S., Almeida, I. P., Fonseca, G. P., Fundamentos de Transporte e Cálculo de Dose em Tratamentos com Feixes de Prótons. Revista Brasileira de Física Médica. 2019;13(1):109-115.
GRANDE, P. L., Bohr’s stopping-power formula derived for a classical free-electron gas, Physical Review A, 104, 012807, (2021)
BERGER, M. J. et al. Report 49, Journal of the International Commission on Radiation Units and Measurements, v. 25, n. 2, 15 May 1993.
JACKSON, J. D., Classical Electrodynamics, 1 ed. Wiley, Nova York, 1962.
ABRAMOWITZ, M. and STEGUN, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed. (Dover, New York, 1964).
MESSIAH, A., Quantum Mechanics (Dover, New York, 1963), Vol. 1.
Report 90: Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications, Journal of the ICRU, 14(1), (2014) NP.2–NP. doi:10.1093/jicru/ndw043
ULMER, W., Theoretical aspects of energy–range relations, stopping power and energy straggling of protons, Radiation Physics and Chemistry 76 (2007) 1089–1107.
MARTINEZ, D.M., RAHMANI, M., BURBADGE, C. et al. A practical solution of the Bethe equation in the energy range applicable to radiotherapy and radionuclide production. Sci Rep 9, 17599 (2019).
HOLMES, M. H. (2013). Introduction to perturbation methods (2nd ed.). New York: Springer. ISBN 978-1-4614-5477-9. OCLC 821883201
PELOWITZ, D. B., MCNPX User 's Manual: Version 2.7.0. (LA-CP-11-00438). Los Alamos National Laboratory, abr. 2011.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2022 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/