Computational model for thermohydraulic analysis of an integral pressurized water reactor with mixed oxide fuel (Th, Pu)O2
DOI:
https://doi.org/10.15392/2319-0612.2022.1943Palavras-chave:
SMR, CFD, MOXResumo
The use of advanced generation III+ and IV nuclear reactors, and their applications, has become important, seen as a means capable of contributing to the global transition to more sustainable, affordable and reliable energy systems. This technology, which could be integrated into future carbon-free electric power generation systems with high proportions of different renewable energy sources, includes Small Modular Reactors (SMR). There are about 100 different proposed projects of Generation III+ and IV, of which about 50 are SMR concepts, in various stages of development and of different types of technologies. Other important issues for achieving the long-term sustainability of nuclear energy are the proper use of its fuel sources and the improvement of nuclear waste management. Therefore, fuels based on a mixture of oxides have been used successfully in several countries. In addition, the incorporation of thorium-based fuel is a current challenge for the new designs of advanced reactors. The present paper focuses on the analysis of a small modular integral pressurized water reactor (iPWR) with Thorium-Uranium Oxide (Th-U MOX) mixtures. A thermohydraulic model is developed using the Ansys CFX program, which allows the calculation of the temperature distribution in the section where the highest power is produced within the SMR IPWR core (critical section). The temperature distributions in the fuel, clad and coolant were calculated with the objective of verifying that they were within the safety limits.
Downloads
Referências
E. M. A. Hussein, “Emerging small modular nuclear power reactors: A critical review,” Phys. Open, vol. 5, no. August, p. 100038, 2020, doi: 10.1016/j.physo.2020.100038.
IAEA, Advances in Small Modular Reactor Technology Developments. 2020.
IAEA, “Thorium Resources as Co- and By- products of Rare Earth Deposits,” IAEA TECDOC Ser., p. 82, 2019.
E. Summary, “the Use of Thorium in the Nuclear Fuel Cycle,” 2015.
IAEA, “IAEA Nuclear Energy Series Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems,” p. 157, 2012, [Online]. Available: www-pub.iaea.org/MTCD/Publications/PDF/Pub1540_web.pdf.
M. C. Betancourt et al., “Mixed-oxide fuel strategies in an integral pressurized water reactor,” Prog. Nucl. Energy, vol. 139, no. June, 2021, doi: 10.1016/j.pnucene.2021.103844.
E. D. Kitcher and S. S. Chirayath, “Neutronics and thermal hydraulics analysis of a small modular reactor,” Ann. Nucl. Energy, vol. 97, no. December 2013, pp. 232–245, 2016, doi: 10.1016/j.anucene.2016.07.019.
M. A. Erighin, “A 48-month extended fuel cycle for the B&W mPowerTM small modular nuclear reactor,” Int. Conf. Phys. React. 2012, PHYSOR 2012 Adv. React. Phys., vol. 2, pp. 1315–1330, 2012.
J. Leppänen, PSG2 / Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. 2008.
A. D. Canonsburg, “ANSYS CFX-Solver Manager User ’ s Guide,” no. January, 2020.
A. T. Godfrey, “VERA core physics benchmark progression problem specifications,” Consort. Adv. Simul. og LWRs, no. 793, pp. 1–189, 2014.
H. J. Kretzschmar and W. Wagner, International steam tables: Properties of water and steam based on the industrial formulation IAPWS-IF97. 2019.
F. Moukalled, L. Mangani, and M. Darwish, Erratum to The finite volume method in computational fluid dynamics [Fluid Mechanics and Its Applications, 113, DOI 10.1007/978-3-319-16874-6], vol. 113. 2016.
IAEA, “Thermophysical Properties of Materials For Nuclear Engineering: A Tutorial and Collection of Data,” Nucl. Power Technol. Dev. Sect., 2008.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2022 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/