Comparing the monochromatic TL response of a high sensitivity natural quartz irradiated with β and γ rays
DOI:
https://doi.org/10.15392/bjrs.v10i2A.2026Palavras-chave:
thermoluminescence, quartz, sensitization, dose-rate, deep trapResumo
This study investigates the effect of the dose-rate in the thermoluminescent glow curves of a single crystal of quartz. The samples were sensitized by the γ radiation combined with the heat-treatments. The glow curves were registered in zeroed (unsensitized) and sensitized conditions using an optical filter centered in violet spectral region. Tens mGy test doses were administered with one β (90Sr/90Y) source and two γ radiation sources (60Co and 137Cs). The TL curves were deconvoluted using a first-order kinetic model. Differences in the glow curves and trapping parameters were observed between zeroed and sensitized samples. Differences were found in the TL curves comparing the three radiation sources. The principal variation is the remarkable increase in the TL signal above 350 °C, which is observed only in sensitized samples with the minor dose-rate source (137Cs). This signal seems to be associated with deep trapping states. The intensities of the components defining the first peak and the high temperature signal show a dependence on the dose-rate. The dose-rate dependence of the first-peak components is explained by the competing effects that may take place during the excitation stage. The components that fitted the sensitized peak (260 oC) do not exhibit a clear dependence on the dose-rate of radiation source.
Downloads
Referências
PREUSSER, F.; DEGERING, D.; FUCHS, M.; HILGERS, A.; KADEREIT, A.; KLASEN, N.; KRBETSCHEK, M.; RICHTER, D.; SPENCER, J. Q. G. Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart Quaternary Science Journal, v. 57, n. 1/2, p. 95–149, 2008. Available at: https://doi.org/10.3285/eg.57.1-2.5
WINTLE, A. G.; MURRAY, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, v. 41, n. 4, p. 369–391, 2006. Available at: https://doi.org/10.1016/j.radmeas.2005.11.001
FLEMING, S. J. The pre-dose technique: a new thermoluminescent dating method. Archaeometry, v. 15, n. 1, p. 13–30, 1973.
GUÉRIN, G.; VALLADAS, H. Cross-calibration between beta and gamma sources using quartz OSL: Consequences of the use of the SAR protocol in optical dating. Radiation Measurements, v. 68, p. 31–37, 2014. Available at: https://doi.org/10.1016/j.radmeas.2014.06.010
GROOM, P. J.; DURRANI, S. A.; KHAZAL, K. A. R.; MCKEEVER, S. W. S. The dose rate dependence of thermoluminescence response and sentivity in quartz. Eur. PACT J., v. 2, p. 200–10, 1978.
HOROWITZ, Y.; OSTER, L.; ELIYAHU, I. Review of dose-rate effects in the thermoluminescence of LiF:Mg,Ti (HARSHAW). Radiation Protection Dosimetry, v. 179, n. 2, p. 184–188, 2018. Available at: https://doi.org/10.1093/rpd/ncx248
CHEN, R.; LEUNG, P. L. A model for dose-rate dependence of thermoluminescence intensity. Journal of Physics D: Applied Physics, v. 33, n. 7, p. 846–850, 2000. Available at: https://doi.org/10.1088/0022-3727/33/7/315
VALLADAS, G.; FERREIRA, J. On the dose-rate dependence of the thermoluminescence response of quartz. Nuclear Instruments and Methods, v. 175, n. 1, p. 216–218, 1980. Available at: https://doi.org/10.1016/0029-554X(80)90310-9
CHEN, R.; PAGONIS, V.; LAWLESS, J. L. Time and dose-rate dependence of TL and OSL due to competition between excitation and fading. Radiation Measurements, v. 82, p. 115–121, 2015. Available at: https://doi.org/10.1016/j.radmeas.2015.09.006
KVASNIČKA, J. TL Response dependence on the dose rate and its consequences. The International Journal Of Applied Radiation And Isotopes, v. 34, n. 4, p. 713–715, 1983. Available at: https://doi.org/10.1016/0020-708X(83)90248-X
FERREIRA DE SOUZA, L. B.; GUZZO, P. L.; KHOURY, H. J. OSL and photo-transferred TL of quartz single crystals sensitized by high-dose of gamma-radiation and moderate heat-treatments. Applied Radiation and Isotopes, v. 94, p. 93–100, 2014. Available at: https://doi.org/10.1016/j.apradiso.2014.07.017
FERREIRA DE SOUZA, L. B.; GUZZO, P. L.; KHOURY, H. J. Correlating the TL response of γ-irradiated natural quartz to aluminum and hydroxyl point defects. Journal of Luminescence, v. 130, n. 8, p. 1551–1556, 2010. Available at: https://doi.org/10.1016/j.jlumin.2010.03.028
GUZZO, P. L.; SOUZA, L. B. F.; KHOURY, H. J. Kinetic analysis of the 300 °C TL peak in Solonópole natural quartz sensitized by heat and gamma radiation. Radiation Measurements, v. 46, n. 12, p. 1421–1425, 2011. Available at: https://doi.org/10.1016/j.radmeas.2011.02.024
GUZZO, P. L.; FERREIRA DE SOUZA, L. B.; BARROS, V. S. M.; KHOURY, H. J. Spectroscopic account of the point defects related to the sensitization of TL peaks beyond 220 °C in natural quartz. Journal of Luminescence, v. 188, p. 118–128, 2017. Available at: https://doi.org/10.1016/j.jlumin.2017.04.009
KHOURY, H. J.; GUZZO, P. L.; SOUZA, L. B. F.; FARIAS, T. M. B.; WATANABE, S. TL dosimetry of natural quartz sensitized by heat-treatment and high dose irradiation. Radiation Measurements, v. 43, n. 2–6, p. 487–491, 2008. Available at: https://doi.org/10.1016/j.radmeas.2008.01.028
CAICEDO MATEUS, F. D.; ASFORA, V. K.; GUZZO, P. L.; BARROS, V. S. M. Investigation of the spectrally resolved TL signals of natural quartz single crystals sensitized by high-dose of gamma-radiation and moderate heat-treatments. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v. 486, p. 37–47, 2021. Available at: https://doi.org/10.1016/j.nimb.2020.11.001
MURSHED, H. Fundamentals of Radiation Oncology. Third ed. Elsevier, 2019. E-book. Available at: https://doi.org/10.1016/C2018-0-04417-5
PUCHALSKA, M.; BILSKI, P. GlowFit—a new tool for thermoluminescence glow-curve deconvolution. Radiation Measurements, v. 41, n. 6, p. 659–664, 2006. Available at: https://doi.org/10.1016/j.radmeas.2006.03.008
BAILEY, R. M. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements, v. 33, n. 1, p. 17–45, 2001. Available at: https://doi.org/10.1016/S1350-4487(00)00100-1
PETROV, S. A.; BAILIFF, I. K. The ‘110 °C’ TL peak in synthetic quartz. Radiation Measurements, v. 24, n. 4, p. 519–523, 1995. Available at: https://doi.org/10.1016/1350-4487(95)00002-V
SUNTA, C. M.; YOSHIMURA, E. M.; OKUNO, E. Supralinearity and sensitization of thermoluminescence. I. A theoretical treatment based on an interactive trap system. Journal of Physics D: Applied Physics, v. 27, n. 4, p. 852, 1994. Available at: https://doi.org/10.1088/0022-3727/27/4/027
BULL, R. K.; MCKEEVER, S. W. S.; CHEN, R.; MATHUR, V. K.; RHODES, J. F.; BROWN, M. D. Thermoluminescence kinetics for multipeak glow curves produced by the release of electrons and holes. Journal of Physics D: Applied Physics, v. 19, n. 7, p. 1321–1334, 1986. Available at: https://doi.org/10.1088/0022-3727/19/7/021
KITIS, G. TL glow-curve deconvolution functions for various kinetic orders and continuous trap distribution: Acceptance criteria for E and s values. Journal of Radioanalytical and Nuclear Chemistry, v. 247, n. 3, p. 697–703, 2001. Available at: https://doi.org/https://doi.org/10.1023/A:1010688122988
YAZICI, A. N.; TOPAKSU, M. The analysis of thermoluminescence glow peaks of unannealed synthetic quartz. Journal of Physics D: Applied Physics, v. 36, n. 6, p. 620–627, 2003. Available at: https://doi.org/10.1088/0022-3727/36/6/303
BALIAN, H. G.; EDDY, N. W. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, v. 145, n. 2, p. 389–395, 1977. Available at: https://doi.org/10.1016/0029-554X(77)90437-2
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2022 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/