Validation of the analytical method using the energy dispersive X-ray fluorescence technique (EDXRF) for application in pharmaceutical sciences
DOI:
https://doi.org/10.15392/2319-0612.2022.2080Palavras-chave:
Validation, Energy Dispersive X-Ray Fluorescence (EDXRF) Technique, Heavy metals, Elemental impurities of Classes 1 (Cd, Pb, As, Hg) and 2A (Co, V, Ni)Resumo
The determination of impurities in raw materials intended for the production of pharmaceutical products is important to guarantee the quality of the final product, as well as to avoid damage to health. Metallic impurities can exhibit toxic effects even at low concentrations and so permissible levels are defined by the regulatory agencies and pharmacopeias. However, few methods are presented in official compendia in Brazil. In this sense, fast, sensitive, and precise techniques such as the energy dispersive X-ray fluorescence technique (EDXRF) must be evaluated for the analysis of metals in materials for pharmaceutical use. This way, therefore, there is the need to investigate the presence of contaminants and their concentration levels. The major goal of this research work was to validate a method for using the Energy Dispersive X-Ray Fluorescence (EDXRF) technique to identify and quantify the chemical composition of raw materials and pharmaceutical products. The methodology used was based on the selection of a microcrystalline cellulose matrix, which was spiked with two classes of contaminant elements, Class 1 (Cd, Pb, As, Hg) and Class 2A (Co, V, Ni) as defined by ICH guideline Q3D. The qualitative and quantitative analyses were carried out using the EDXRF technique, which proved to be quite effective and met all the validation parameters required in the mandatory official compendia (Resolution of the Collegiate Board (RDC) of Brazilian Health Regulatory Agency (Anvisa) nº 166, July 24, 2017), such as selectivity, linearity, precision, detection limit, quantification limit and robustness. This study showed that EDXRF can be used as a technique for detection and quantification of elemental impurities belonging to Class 1 and Class 2A.
Downloads
Referências
ICH. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human use, 2019. Guideline for elemental impurities Q3D. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-32.pdf, 2019.
KUSHWAHA, P. Metallic impurities in pharmaceuticals: An overview. Current Pharmaceutical Analysis v. 16, n. 8, p 1-9, 2020.
BRAZILIAN PHARMACOPEIA 6th edition Brasília: ANVISA, 2019. Available at: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira.
UNITED STATES PHARMACOPEIA, 2019. USP <1225> Validation of Compendial Procedures.
ARJOMANDIA, M.; SHIRKHANLOO, H. Review: Analytical methods for heavy metals determination in environment and human samples. Anal Meth Environ Chem J v. 2, p. 97-126, 2019.
XU, G.; SONG, P.; XIA, L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics v 10, n.18, p. 4419–4445, 2021.
FURUKAWA, H., ICHIMARU, N., SUZUKI, K., NISHINO, M., BROUGHTON, J., LEINDERS, J., OCHI, H. The comparative verification of calibration curve and background fundamental parameter methods for impurity analysis in drug materials. X-Ray Spectrum v. 46, n. 5, p. 382–387, 2017.
SAUER, B., XIAO, Y., ZOONTJES, M., KROLL, C. Application of X-ray fluorescence spectrometry for screening pharmaceutical products for Elemental Impurities according to ICH guideline Q3D. J Pharm Biomed Anal, v. 179, p. 1–8, 2020. DOI: 10.1016/j.jpba.2019.113005
UNITED STATES PHARMACOPEIA, 2013. USP <232> Elemental Impurities-Limits.
ISO GUIDE 35:2017, Fourth Edition: Reference materials - Guidance for characterization and assessment of homogeneity and stability Paperback – August 1, 2019.
WHO, WORLD HEALTH ORGANIZATION. Model List of Essential Medicines, 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf
MARGUÍ, E., FONTAS, C., BUENDI A., HIDALGO, M., QUERALT, I. Determination of metal residues in active pharmaceutical ingredients according to European current legislation by using X-ray fluorescence spectrometry. J Anal At Spectrom v. 24, p. 1253-1257, 2009.
ANVISA. Brazilian Health Regulatory Agency, Resolution of the Collegiate Board (RDC) nº 166, July 24, 2017. Dispõe sobre a validação de métodos analíticos e dá outras providências. Available at: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19194581/do1-2017-07-25-resolucao-rdc-n-166-de-24-de-julho-de-2017-19194412.
MARSON, B.M., CONCENTINO, V., JUNKERT, A.M., FACHI, M.M., VILHENA, R.O., PONTAROLO, R. Validation of analytical methods in a pharmaceutical quality system: an overview focused on hplc methods. Quim Nova v. 43, n. 8, p. 1190-1203, 2020.
KONOPKA, J. Options for quantitative analysis of light elements by SEM/EDS. Technical Note 52523. Thermo Fisher Scientific, Madison, WI USA. Available at: https://tools.thermofisher.com/content/sfs/brochures/TN52523_E_0713M_LightElement_H.pdf
BELOUAFA, S., HABTI, F., BENHAR, S., BELAFKIH, B., TAYANE, S., HAMDOUCH, S., BENNAMARA, A., ABOURRICHE, A. Statistical tools and approaches to validate analytical methods: methodology and practical examples. Int J Metrol Qual Eng v. 8, n. 9, p 1-10, 2017. Available at: https://www.metrology-journal.org/articles/ijmqe/pdf/2017/01/ijmqe160046.pdf.
INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Orientação sobre validação de métodos analíticos DOQ-CGCRE-008, 2020. Available at: http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_08.pdf
VOGEL-MIKUŠ, K., ARČON, I.; KUMP, P., PELICON, P., NEČEMER, M., VAVPETIČ, P., KOREN, S., REGVAR, M. Analytical tools for exploring metal accumulation and tolerance in plants. In: ANJUM, N. A., AHMAD, I., DUARTE, A.C., UMAR, S., KHAN, N.A., PEREIRA, M. E. Phytotechnologies: Remediation of Environmental Contaminants, 2012, p. 468–521. Taylor & Francis, eBooks.
KUMP, P., NEČEMER, M., VEBER, M. Determination of trace elements in mineral water using total reflection X-ray fluorescence spectrometry after preconcentration with ammonium pyrrolidinedithiocarbamate. X-Ray Spectrom v. 26, n. 4, p. 232–236, 1998.
NEČEMER, M., KUMP, P., VOGEL-MIKUŠ, K. Use x-ray fluorescence-based analytical techniques in phytoremediation. In: GOLUBEV, I.A. (Editors) Handbook of Phytoremediation, 9. ed., 2021, p. 331-358, Nova Science Publishers: New York.
CHOWDARY L. G., RAVISANKAR, P., KUMAR, A. G., MOUNIKA K, BABU P. S. Analytical method validation parameters: An updated review. Int. J Pharm Sci Rev v. 61, n. 2, p. 1-7, 2020.
EMA. European Medicines Agency; ICH Harmonized tripartite guideline - Validation of analytical procedures: text and methodology Q2 (R1), London, 2005. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf.
GUSTAVO GONZÁLEZ, A., ÁNGELES HERRADOR, M. A. Practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC - Trend Anal Chem v. 26, n. 3, p. 227–238, 2007.
LUO, L., WANG, B., JIANG, J., FITZGERALD, M., HUANG, Q., YU, Z., LI, H., ZHANG, J., WEI, J., YANG, C., ZHANG, H., DONG, L., CHEN, S. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front Pharmacol, v. 14, p. 1-14, 2021.
DESTEFANO, T., THOMAS, R. From heavy metals testing to the measurement of elemental impurities in pharmaceuticals: Over 100 years in making the change. Spectroscopy v. 33, n. 5, p. 14-19, 2018.
CROFFIE, M. E.T., WILLIAMS, P.N., FENTON, O., FENELON, A., METZGER, K., DALY, K. Optimizing sample preparation and calibrations in EDXRF for quantitative soil analysis. Agronomy v. 10, n. 1309, p. 1-16, 2020.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2022 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/