A brief history of Accident Chernobyl: Simulation of the influence of Neutron Absorbing Poisons and temperature feedback effects by Point Kinetics Equations

Autores

  • Natália Barros Barros Schaun Universidade Federal de Pelotas image/svg+xml
  • Fernanda Tumelero ,
  • Claudio Zen Petersen ,

DOI:

https://doi.org/10.15392/bjrs.v10i3.2082

Palavras-chave:

Neutron Point Kinetics Equations, Temperature feedback, Absorbers poisons, Chernobyl accident simulation, Rosenbrock method

Resumo

In this paper, the solution of the  Neutron Point Kinetics model is presented, adding the effects of temperature and absorbers poisons within a historical and technical context to simulate the preliminary characteristics of the Chernobyl accident. The Point Kinetics model was able to extract physical information consistent with what was expected to predict the reactor situation until the accident. It was also possible to verify, given the results, that the Rosenbrock method was able to overcome the degree of stiffness of the ODE system, besides solving a non-linear problem. Thus, this study has contributed to highlighting the importance of temperature effects and especially absorbers poisons in the final power behavior, extremely relevant for decision making in the operation and safety of a nuclear power plant.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

CASTILHO, M. A.; SUGUIMOTO, D. Y. L. Chernobyl - A catástrofe. Rev. da UninCor, v. 12, p. 316-322, 2014.

CHAN, P. S. W.; DASTUR, A. R.; GRANT, S. D.; HOPWOOD, J. M.; CHEXAL, B. Multidimensional Analysis of the Chernobyl accident. Atomic Energy of Canada Limited and Electric Power Research Institute AECL-9604. Canada, 1988.

PLOKHY, S. Chernobyl: History of a Tragedy. London: Penguin Press, 2018.

MEDVEDEV, G. The Truth about Chernobyl. New York: Tauris, 1991.

FLETCHER, C.D.; CHAMBERS, R.; BOLANDER, M. A.; DALLMAN, R. J. Simulation of the Chernobyl accident. Nucl. Eng. Des., v. 105, p. 157-172, 1988.

YOSHIDA, K.; TANABE, F.; HIRANO, M.; KOHSAKA A. Analyses of Power Excursion Event in Chernobyl Accident with RETRAN Code. Taylor & Francis. J. Nucl. Sci. Technol. v. 23, p. 1107-1109, 1986.

GEER, L.; PERSSON, C.; RODHE, H. A Nuclear Jet at Chernobyl Around 21:23:45 UTC on April 25, 1986. Nucl. Technol., v. 201, p. 11-22, 2017.

PARISI, C. Nuclear Safety of RBMK Reactors. Tese de doutorado em Engenharia Leonardo da Vinci, Universidade de Pisa, 2008.

NAHLA, A. A. An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects. Ann. Nucl. Energy., v. 38, p. 2810-2817, 2011.

ABOANBER, A. E.; NAHLA, A. A.; AL-MALKI, F. A.. Stability of the analytical perturbation for nonlinear coupled kinetics equations. In: Intl. Conf. On Mathematics, Trends and Development ICMTD12, Egyptian Mathematical Society, Cairo, Egypt, 2012.

MOHIDEEN ABDUL RAZAK, M.; RATHINASAMY, N.. Haar wavelet for solving the inverse point kinetics equations and estimation of feedback reactivity coefficient under background noise. Nucl. Eng. Des., v. 335, p. 202-209, 2018.

ABOANBER, A.; HAMADA, D. Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback. Ann. Nucl. Energy., v. 30, p. 1111-1122, 2003.

SATHIYASHEELA, T. Power series solution method for solving point kinetics equations with lumped model temperature and feedback. Ann. Nucl. Energy. v. 36, p. 246-250, 2009.

PAGANIN, T. M.; BODMANN, B. E. J.; VILHENA, M. T. On a point kinetic model for nuclear reactors considering the variation in fuel composition. J. Prog. Nucl. Energy., v. 118, p. 103-134, 2020.

YANG, X.; JEVREMOVIC, T. Revisiting the Rosenbrock numerical solutions of the reactor point kinetics equation with numerous examples. J. Nucl. Technol. Radiat. Prot., v. 24, p. 3-12, 2009.

SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Solution of the Neutron Point Kinetics equations by applying the Rosenbrock method. In: 18th Brazilian Congress of Thermal Sciences and Engineering, Online, 2020.

SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Solução das equações da cinética pontual de nêutrons com feedback de temperatura via método de Rosenbrock. In: XXIII Encontro Nacional de Modelagem Computacional, Palmas, TO, 2020.

SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Influence of the main neutron absorbers poisons coupled to the Point Kinetics model by the Rosenbrock’s method. BRAZILIAN JOURNAL OF RADIATION SCIENCES, v. 10, p. 1-20, 2022.

DUDERSTADT, J., HAMILTON, L. Nuclear Reactor Analysis. New York: John Wiley & Sons, 1976.

CURTISS, C.; HIRSCHFELDER, J. Integration of Stiff Equations. Proceedings of the National Academy of Sciences of the United States of America, v. 38, p. 235-243, 1952.

VOSS, D. A. Fourth-order parallel Rosenbrock formulae for stiff systems. J. Math. Comput. Model. Dyn. Syst., v. 40, p. 1193-1198, 2004.

ABOANBER, A. E; HAMADA, Y. Generalized Runge–Kutta method for two and three-dimensional space–time diffusion equations with a variable time step. Ann. Nucl. Energy., v. 35, p. 1024-1040, 2008.

KAPS, P.; RENTROP, P. Generalized Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numer Math., v. 33, p. 55-68, 1979.

ABOANBER, A. E. Stability of generalized Runge–Kutta methods for stiff kinetics coupled differential equations. J. Phys. A Math. Theor., v. 39, p. 1859-1876, 2006.

SILVA, D. E. Acidente de Chernobyl (causas e consequências). Rio de Janeiro: Comissão Nacional de Energia Nuclear (CNEN), 1986.

Publicado

18-09-2022

Edição

Seção

Artigos

Como Citar

A brief history of Accident Chernobyl: Simulation of the influence of Neutron Absorbing Poisons and temperature feedback effects by Point Kinetics Equations. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 3, 2022. DOI: 10.15392/bjrs.v10i3.2082. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2082. Acesso em: 17 jul. 2025.