X-ray spectrometry applied for determination of linear attenuation coefficient of polymer-based samples as radiologically tissue-equivalent materials
DOI:
https://doi.org/10.15392/2319-0612.2023.2166Palavras-chave:
attenuation coefficient, X-ray spectrometry, tissue-equivalent material, polymerResumo
In this work we obtained experimental linear attenuation coefficients of polymer-based samples at diagnostic imaging energy range (15-150 keV) for eleven formulations candidates for tissue-equivalent materials (TEMs). TEMs is any material that simulates a human body part or human tissue in its interaction with radiation. In diagnostic radiology, the maximum difference between the linear attenuation coefficient of the TEMs and the target material should be no more than 5% in the energy range of interest. A polienergetic narrow beam was obtained using a tungsten target x-ray tube and CdTe detector. The densities of the samples were determined and compared with reference materials obtaining a maximum difference of 17%. The comparisons between the linear attenuation coefficient of the formulations and the respective reference materials for which they were initially designed, has demonstrated good correspondence over a wide energy range. Energy ranges in which the developed samples simulate other human tissues in addition to those initially considered were found, taken into account the criterion that the maximum difference between the linear attenuation coefficients does not exceed 5% is met. The results emphasize the possibility of production and characterization of TEMs to be used in the construction of imaging and dosimetry phantoms.
Downloads
Referências
ICRU - International Commission on Radiation Units and Measurements. Tissue Substitutes in Radiation Dosimetry and Measurement. ICRU Report 44, Bethesda: ICRU, 1989.
TUĞRUL, Taylan; EROĞUL, Osman. Analysis of water-equivalent materials used during irradiation in the clinic with XCOM and BEAMnrc. Journal of Radiation Research and Applied Sciences, v. 12, n. 1, p. 455-459, 2019. https://doi.org/10.1080/16878507.2019.1708576
HILL, R. F.; BROWN, S.; BALDOCK, C. Evaluation of the water equivalence of solid phantoms using gamma ray transmission measurements. Radiation Measurements, v. 43, n. 7, p. 1258-1264, 2008. https://doi.org/10.1016/j.radmeas.2008.01.019
SOARES, Leonardo Diniz Hipólito; GOBO, Michel Stephani da Silva; POLETTI, Martín Eduardo. Measurement of the linear attenuation coefficient of breast tissues using polienergetic x-ray for energies from 12 to 50 keV and a silicon dispersive detector. Radiation Physics and Chemistry, v. 167, p. 108226, 2020. https://doi.org/10.1016/j.radphyschem.2019.03.030
AMINI, Iman; AKHLAGHI, Parisa; SARBAKHSH, Parvin. Construction and verification of a physical chest phantom from suitable tissue equivalent materials for computed tomography examinations. Radiation Physics and Chemistry, v. 150, p. 51-57, 2018. https://doi.org/10.1016/j.radphyschem.2018.04.020
MCGARRY, Conor K. et al. Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology, v. 65, n. 23, p. 23TR01, 2020. doi 10.1088/1361-6560/abbd17
MARIANO, Leandro; COSTA, Paulo R. Abstract ID: 94 Development of a methodology for formulating radiologically equivalent materials to human tissues. Physica Medica: European Journal of Medical Physics, v. 42, p. 20-21, 2017. https://doi.org/10.1016/j.ejmp.2017.09.051
TOMAL, A. et al. Experimental determination of linear attenuation coefficient of normal, benign and malignant breast tissues. Radiation Measurements, v. 45, n. 9, p. 1055-1059, 2010. https://doi.org/10.1016/j.radmeas.2010.08.008
SANTOS, Josilene C. et al. Direct measurement of clinical mammographic x‐ray spectra using a CdTe spectrometer. Medical Physics, v. 44, n. 7, p. 3504-3511, 2017. https://doi.org/10.1002/mp.12287
DI CASTRO, E. et al. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra. Physics in Medicine & Biology, v. 29, n. 9, p. 1117, 1984. doi 10.1088/0031-9155/29/9/008
COSTA, Paulo Roberto et al. Evaluation of X-ray spectra transmitted by different concrete compositions. Radiation Physics and Chemistry, v. 116, p. 349-354, 2015. https://doi.org/10.1016/j.radphyschem.2015.03.040
BERGER, Martin J.; HUBBELL, J. H. XCOM: Photon cross sections on a personal computer. National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, 1987. https://doi.org/10.2172/6016002
HUBBELL, J. H.; SELTZER, S. M. NIST standard reference database 126. Gaithersburg, MD: National Institute of Standards and Technology, 1996.
WHITE, D. R.; WOODARD, H. Q.; HAMMOND, S. M. Average soft-tissue and bone models for use in radiation dosimetry. The British journal of radiology, v. 60, n. 717, p. 907-913, 1987. https://doi.org/10.1259/0007-1285-60-717-907
POLETTI, M. E.; GONÇALVES, O. D.; MAZZARO, I. X-ray scattering from human breast tissues and breast-equivalent materials. Physics in Medicine & Biology, v. 47, n. 1, p. 47, 2001. doi 10.1088/0031-9155/47/1/304
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2023 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/