Dose response assessment of conventional Fricke: a relationship between UV-Visible and nuclear magnetic resonance techniques
DOI:
https://doi.org/10.15392/2319-0612.2023.2194Palavras-chave:
Conventional Fricke, UV-Visible, Nuclear magnetic resonanceResumo
Conventional Fricke is an aqueous ferrous sulfate solution that has been widely studied in the field of chemical dosimetry. The feasibility of its use has become attractive for high dose measurements that are of clinical interest in the field of radiotherapy and for industrial purposes, in the irradiation of blood bags and the sterilization of surgical material. The derivation of the absorbed dose of Fricke depends on the radiation-induced oxidation of iron (II) ions (Fe2+) present in the aqueous solution to iron (III) ions (Fe3+), which occurs after exposure to ionising radiation. In this paper, it is proposed to evaluate the dose response of the Fricke dosimeter using two different analytical techniques, ultraviolet-visible spectrophotometry (UV-Vis) and nuclear magnetic resonance spectroscopy (NMR). Twelve groups of samples were analysed in triplicate, irradiated with doses between 0 and 800 Gy, using a cobalt-60 source (60Co). The dose rate of Fricke dosimeters was evaluated against the practical values obtained. The different methods allowed an analytical correlation of the species of oxidised iron (Fe3+) using a linearity curve as a function of the applied radiation dose.
Downloads
Referências
FRICKE, H., MORSE, S. The chemical action of roentgen rays on dilute ferrous sulfate solutions as a measurement of dose. Am. J. Roentgen. Radium Ther. Nucl. Med., v.18, p.420, 1927.
ATTIX, F. H. Introduction to radiological physics and radiation dosimetry, 1th ed.: John Wiley & Sons, p.418-425, 2004.
GREENING, J. R. Fundamentals of Radiation Dosimetry. Medical Physics, handbooks 15, Second Edition. Published by Taylor & Francis Group, p.125-130, 1985.
ISO/ASTM 51026-15, Standard Practice for Using the Fricke Dosimetry System, ASTM International, West Conshohocken, PA, 2015.
SCHREINER L. J. Review of Fricke gel dosimeters. J. Phys.: Conf. Ser. 3- Third International Conference on Radiotherapy Gel Dosimetry, p. 9-21, 2004.
TURNER, J.E. Atoms, Radiation, and Radiation Protection. 3th ed. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim, p.285, 2007.
DE ALMEIDA, C.E., OCHOA, R., DE LIMA, M.C., DAVID, M.G., PIRES, E.J., PEIXOTO, J.G., SALATA, C., BERNAL, M.A. A feasibility study of Fricke Dosimetry as an absorbed dose to water standard for192Ir HDR sources. Plos One, v.9, p.1-13, 2014.
NONATO DE OLIVEIRA, L.; OLIVEIRA DO NASCIMENTO, E.; CALDAS, L.V.E. New Fricke Xylenol Liquid detector doped with methylene blue (FXL-mblue) irradiated with red LED light. J. Lumin., nº 117730, v.230, p.1-19, 2021.
ALVES, A.V.S.; DE ALMEIDA,W.S; SUSSUCHI, E.M.; LAZZERI, L.; D'ERRICO, F. ; DE SOUZA, S.O. Investigation of chelating agents/ligands for Fricke gel dosimeters. Radiat. Phys. Chem., v.150, p. 151-156, 2018.
GORE, J. C.; KANG, Y. S; SCHULZ, R.J. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol., no 10, v. 29, p.1189-1197, 1984.
COLLURA, G.; GALLO, S.; TRANCHINA, L.; ABBATE, B.F.; BARTOLOTTA, A.; D’ERRICO.,F.; MARRALE, M. Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging. Nucl Instrum Methods Phys Res B: Beam Interactions with Materials and Atoms. v. 414, p.146-153, 2018.
VERGOTE, K.; DEENE, Y. D.; DUTHOY, W.; GERSEM, W. D.; NEVE, W. D.; ACHTEN, E.; WAGTER, C. D. Validation and application of polymer gel dosimetry for the dose veri_cation of an intensity-modulated arc therapy (IMAT) treatment. Phys. Med. Biol., n. 2, v. 49, p. 287- 305, 2004.
CHU, W.C. Radiation Dosimetry Using Fricke-infused Gels and Magnetic Resonance Imaging. Proc. Natl. Sci. Counc. ROC (B), no. 1, v. 25, p. 1-11, 2001.
SECO, J.; CLASIE, B. and PARTRIDGE M. Review on the characteristics of radiation detectors for dosimetry and imaging. Med. Biol., v.59, p. R303–R347, 2014.
MARRALE, M.; COLLURA, G.; GAGLIARDO, C.; GALLO, S.; IACOVIELLO, G.; LONGO, A.; TRANCHINA, L.; CAPUTO, V.; D'ERRICO, F.; GUELI, A.M.; MIDIRI, M.; PANZECA, S.; BRAI, M. Nuclear magnetic resonance relaxometry and imaging for dosimetry with agarose Fricke gel, Phys. Med., v.32, p.42, 2016.
SHEYKHOLESLAMI, N.; PARWAIE, W.; VAEZZADEH, V.; BABAIE, M.; FARZIN, M.; GERAILY, G.; KARIMI, A.H. Dual application of Polyvinyl Alcohol Glutaraldehyde Methylthymol Blue Fricke hydrogel in clinical practice: Surface dosimeter and bolus. Appl. Radiat. Isot. v. 197, 2023.
ARANGO, E. M.; PICKLER, A.; MANTUANO, A.; SALATA, C.; ALMEIDA. C. E.; Feasi-bility study of the Fricke chemical dosimeter as an independent dosimetric system for the small animal radiation research platform (SARRP). Med. Phys, v.71, p. 168-175, 2020.
BRYANT, T. H. E.; RIDLER, T. P. Factors Affecting the Measurement of the Extinction Co-efficient of Fe3+ Ions in a Fricke Dosimeter Solution. H. Phys., no3, v.15, p 263-268, 1968.
SHORTT, K. R. The temperature dependence of G (Fe3+) for the Fricke dosemeter. Phys. Med. Biol., no 12, v. 34, p.1923-1926, 1989.
SCHARF, K. and LEE, R.M. Investigation of spectrophotometric method of measuring ferric ion yield in ferrous sulfate dosimeter. Radiat. Res., v. 16, p.115–124, 1962.
KLASSEN, N. V, SHORTT, K. R, SEUNTJENS, J. and ROSS, C. K. Fricke dosimetry: the difference between G (Fe3+) for 60Co-rays and high-enerGy x-rays. Phys. Med. Biol., v.44 p.1609–1624, 1999.
PODGORSAK, M. B; SCHREINER, L.J. Nuclear magnetic relaxation characterization of ir-radiated Fricke solution. Med. Phys.; v.19, p. 87-95, 1992.
LEPAGE, M. et al. Magnetization transfer imaging for polymer gel dosimetry. Phys. Med. Biol., n. 11, v. 47, p. 1881, 2002.
ARAUJO, Bárbara C.R et al.; A new formulation for polymer fricke dosimeter and an innova-tive application of neural network to study dose profile from spin-echo NMR data. Rad. Phys. and Chem., v. 184, p. 109-444, 2021.
MANTUANO, A. et al; A pilot study of a postal dosimetry system using the Fricke dosimeter for research irradiators, Phy. Med., n. 11, v. 84, p. 214-219, 2021.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2023 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/