Mapping of processes and risks in the digital transformation in metrology of ionizing radiation, a case study in X-rays air kerma calibration
DOI:
https://doi.org/10.15392/2319-0612.2023.2225Palavras-chave:
Metrology 4.0, Calibration 4.0, X-rays, Risks, ManagementResumo
For the new metrological challenges of an increasingly digitized world, several countries are developing applications and infrastructure for Digital Calibration Certificates – DCC, researching the comparability of real and virtual measurements. Objective: to map the processes and risks related to the digital transformation of X-rays air kerma calibration. The Failure Mode and Effect Analysis - FMEA was used to quantify risks and is widely used in the aviation and automotive industry due to its reliability. The results presented a conceptual model for calibrating ionizing radiation quantities in the framework of new technologies and calibration 4.0 and comparing processes and risks. The conceptual model of calibration 4.0 comprises three main parts: a transmitter, the 4.0 communication network, and a receiver. Intelligent devices with configurations enable calibration data transfers by radio-frequency messaging in all these parts. Comparing risks in contemporary and calibration 4.0 processes, a slight reduction in the total risk can be observed. But new risks are unique to the 4.0 model, all with maximum severity, and how to mitigate them is still unknown. It is also possible to estimate that artificial intelligence and automation can significantly reduce measurement risks, identification, and error in the analysis and use of calibration certificates.
Downloads
Referências
D. C. Mosley, P. H. Paul Jr., L C. Megginson, Administração: Conceitos e Aplicações.pdf. 1986.
ABNT NBR ISO 9000: Sistemas de gestão da qualidade - fundamentos e vocabulário, “Sistemas de gestão da qualidade-Fundamentos e vocabulário,” 2015. [Online]. Available: www.abnt.org.br
L. Rocha, E. Savio, M. Marxer, and F. Ferreira, Education and training in coordinate metrology for industry towards digital manufacturing, J Phys Conf Ser, vol. 1044, no. 1, 2018, doi: 10.1088/1742-6596/1044/1/012026.
PTB, Metrology for AI in medicine Background, strategy and implementation recommendations, 2021.
M. S. Gadelrab and R. A. Abouhogail, Towards a new generation of digital calibration certificate: Analysis and survey, Measurement, vol. 181, no. May, p. 109611, 2021, doi: 10.1016/j.measurement.2021.109611.
I. F. M. Garcia, M. J. Ferreira, E. M. Macedo, T. M. v Navarro, and J. P. G. Peixoto, The state of the art in management and metrology 4.0 for ionizing radiation, CBMRI-VIII-Congresso Brasileiro de Metrologia das Radiações Ionizantes, pp. 1–8, 2021.
ABNT NBR ISO/IEC 17025, Requisitos gerais para competência de laboratórios de ensaio e calibração., 2017.
A. G. Pereira, L. G. L. Vergara, E. A. D. Merino, and A. Wagner, Solutions in radiology services management: a literature review, Radiol Bras, vol. 48, no. 5, pp. 298–304, 2015, doi: 10.1590/0100-3984.2014.0065.
R. B. Andres F., M. G. Jhon F, and N. B. Gonzalo, Caracterización de la gestión metrológica en instituciones sanitarias, Rev Ing Biomed, vol. 9, no. 18, pp. 57–64, 2015, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-97622015000200008&lng=en&nrm=iso&tlng=es
de la Fuente Ruiz, Sonia, Implantación, Estudio Y Control De Calidad De Variables Climáticas En El Ámbito De La Metrología 4.0., 2019. [Online]. Available: https://core.ac.uk/download/pdf/228074073.pdf
Roberto Benitez;Roberto Benitez Jr;, Wireless calibration for Industry 4.0, 19th International Congress of Metrology, 2019.
G. M. Geronymo, Smart Lab: an application of Industry 4.0 designprinciples to calibration laboratories, J Phys Conf Ser, p. 6, 2021.
S. Andonov and M. Cundeva-Blajer, Calibration for Industry 4.0 Metrology: Touchless Calibration, J Phys Conf Ser, vol. 1065, no. 7, pp. 0–4, 2018, doi: 10.1088/1742-6596/1065/7/072019.
Barra, H. C; Peixoto, J. G. Challenges for achieving 4.0 metrology in ionizing, metrologia 2019, p. 360, 2019.
S. Andonov and M. Cundeva-Blajer, FMEA for TCal: Risk analysis in compliance to EN ISO/IEC 17025:2017 requirements, 24th IMEKO TC4 International Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, pp. 222–227, 2020.
L. S. Goecksa, A. A. dos Santosa, and A. L. Korzenowskia, Decision-making trends in quality management: A literature review about industry 4.0, Production, vol. 30, 2020, doi: 10.1590/0103-6513.20190086.
A. Varshney, N. Garg, K. S. Nagla, T. S. Nair, S. K. Jaiswal, and S. Yadav, Challenges in Sensors Technology for Industry 4 . 0 for Futuristic Metrological Applications, MAPAN, 2021, doi: 10.1007/s12647-021-00453-1.
K. C. Silveira Cunha et al., The Reliability of Metrologia 4.0 Data in the Industrial Technological Scenario: How This can Impact the Forms of Dimensional Control in the Industry, International Journal of Engineering and Applied Sciences (IJEAS), vol. 7, no. 4, pp. 34–38, 2020, doi: 10.31873/ijeas.7.04.05.
C. Brown, T. Elo, K. Hovhannisyan, D. Hutzschenreuter, P. Kuosmanen, O. Maennel, T. Mustapaa, P. Nikander, T. Wiedenhoefer, Infrastructure for Digital Calibration Certificates, in IEEE International Workshop on Metrology for Industry 4.0 & IoT, 2020, p. 4.
Micha Wieczorowski, Michał Paweł, Bartosz Gapiński , “Perspectives of modern metrology,” mechanik-science.com, 2019. https://doi.org/10.1109/METROI4.2019.8792886
R. Benitez, R. Benitez, C. Ramirez, J. A. Vasquez, Sensors calibration for Metrology 4.0, in II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), 2019, p. 4.
D. H. Stamatis, Failure Mode and Effect Analysis FMEA from Theory to Execution. 2003.
International Atomic Energy Agency - IAEA, Technical reportes series n° TRS 457. Dosimetry in diagnóstic Radiology: An international code of pratice, Vienna, 2007.
I. F. M. Garcia, E. M. Macedo, M. V. T. Navarro, J. G. P. Peixoto. Mapping of processes and risks in the digital transformation in metrology of ionizing radiation - a case study in X-rays air kerma calibration. Physikalisch-TECHNISCHE BUNDESANSTALT - PTB, 3rd International Digital Calibration Certificate (DCC) Conference., Online, 2023.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2023 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/