Combined application of gamma radiation, cleaning and chemical sanitizers in decontamination of vehicle air conditioning filters
DOI:
https://doi.org/10.15392/2319-0612.2023.2244Palavras-chave:
air, filter, car, fungi, gamma radiationResumo
This work aimed to analyze the fungal contamination of air-conditioning filter waste (n=15) as an indicator of Quality Air Indoor from different car models in São Paulo city in São Paulo State, Brazil, during the period from October 2018 to July 2019. Three different treatments were used for the decontamination of car air conditioning filters, such as mechanical vacuum cleaning (I), vacuum cleaning and use of sanitizing product (II), and sanitizing product associated with radiation treatment at a dose of 17 kGy (III). After the treatments, microbiological analyses were performed and samples were plated in Petri dishes containing Sabouraud agar transferred by Swabs, and incubated for 7 days at 25 °C. The Petri dishes were stored in a standard Biochemical Oxygen Demand incubator, for the growth of fungal cultures. After incubation, the fungal cultures were evaluated, and the fungal counting was expressed in unit-forming colonies (UFC) and frequency in samples (%). The fungi were examined by lactophenol blue solution staining for microscopy. All samples of treatment I and II were contaminated with various fungal genera and high bioburden, namely (treatment I) Alternaria alternata, Aspergillus flavus, A. niger, Cladosporium spp., Fusarium spp., Mucor spp., Nigrospora spp., Not Sporulated Fungi (NSF), Penicillium spp., Rhizopus spp., Rhodotorula spp., Trichoderma spp. and yeasts. Treatment II showed Alternaria alternata, Aspergillus flavus, A. fumigatus, A. niger, A. ochraceus, Cladosporium spp., Mucor spp., NSF, Penicillium spp., Phoma spp., Rhizopus spp., Rhodotorula spp., Trichoderma spp., and yeasts. Treatment III presented NSF and yeasts, with 80% of material decontamination.
Downloads
Referências
AQUINO, S.; LIMA, J.E.A.; NASCIMENTO, A.P.B.; REIS, F.C. Analysis of fungal contamination in vehicle air filters and their impact as a bioaccumulator on indoor air quality. Air Qual Atmos Health, v. 11, p. 1143-1153, 2018.
ZULAUF, N.; DRÖGE, J.; KLINGELHÖFER, D.; BRAUN, M.; OREMEK, G.M.; GRONEBERG, D.A. Indoor Air Pollution in Cars: An Update on Novel Insights. Int J Environ Res Public Health, v.16, n.13, p. 2441, 2019.
BARNES, N.M.; NG, T.W.; MA, K.K.; LAI, K.M. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong. Int J Environ Res Public Health,v.15, p. 611, 2018.
INTERNATIONAL ATOMIC ENERGY AGENCY. Combined methods for liquid radioactive waste treatment Final report of a co-ordinated research project 1997–2001. TECDOC, nº.1336, 2003.
THAKUR, B.T.; SINGH K. Combined processes in food irradiation. Trends Food Sci Technol., v. 6, p. 7-11, 1995.
DZIUBAK, T. ; DZIUBAK, S.D. Experimental study of filtration materials used in the car air intake. Materials, v. 13, p. 3498, 2020.
ASME STANDARD N509-1989. Nuclear Power Plant Air-Cleaning Units and Components, The American Society of Mechanical Engineers, New York, 1989.
WINEGARDNER, W. K. Aging Assessment of Nuclear Air-Treatment System HEPA Filters and Adsorbers Phase I. Division of Engineering Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555--0001 NKC FIN B2911 Pacific Northwest Laboratory Richland, WA 99352, 1993.
DEANGELIS, H.E.; GRILLET, A.M.; NEMER, M.B. et al. Gamma radiation sterilization of N95 respirators leads to decreased respirator performance. PLoS One, v. 16, n. 4, p. e0248859, 2021.
SORIANI, R.R. ; SATOMI, L.C. ; PINTO, T.J.A. Effects of ionizing radiation in ginkgo and guarana. Radiat Phys Chem, v. 73, n. 4, p. 239-242, 2005.
NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. Denatonium benzoate, 2022. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/Denatonium-benzoate>. Last accessed: 23 Dec. 2022.
PULCE, C.; DESCOTES, J. Household products. Hum Toxicol, p.683-702, 1996.
PITT, J.I.; HOCKING, A.D. Fungi and Food Spoilage, London & UK: Springer Science & Business Media, 2009.
GOLOFIT-SZYMCZAK, M.; STOBNICKA-KUPIEC, A.; GORNY, R.L. Impact of air-conditioning system disinfection on microbial contamination of passenger cars. Air Qual Atmos Health, v 12, p.1127–1135, 2019.
UDAYA, P.N.K.; BHUVANESWARI, S.; KUMAR, M.R.; RUPESH, S.L.K. A study on the prevalence of indoor mycoflora in air-conditioned buses. Br Microbiol Res J, v. 4, p. 282-292, 2014.
VIEGAS, C.; MONTEIRO, A.; SANTOS, M. et al. Filters from taxis air conditioning system: a tool to characterize driver’s occupational exposure to bioburden? Environ Res, v. 164, p.522–529, 2018.
REPONEN, T.; WILLEK, K.; ULEVICIUS, V., REPONEN, A.; GRINSHPUN, S.A.. Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores. Atmos Environ, v. 30, p. 3967-3974, 1996.
NASCIMENTO, F.J.A.; BRADSHAW, C. Direct and indirect effects of ionizing radiation on grazer–phytoplankton interactions. J Environ Radioact, v. 155-156, p. 63-70, 2016.
BALDACCHINO, G.; BRUN, E.; DENDEN, I. et al. Importance of radiolytic reactions during high-LET irradiation modalities: LET effect, role of O2 and radiosensitization by nanoparticles. Cancer Nano, v. 10, n. 3, 2019.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2023 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/