New Deformity Outline on the Breast Radiation Therapy for diminishing Absorbed Dose Ratio
DOI:
https://doi.org/10.15392/2319-0612.2023.2281Palavras-chave:
Positron radiation, Breast cancer, Deformity, Absorbed Dose ratioResumo
Breast cancer is one of the most common malignant diseases in women. After tumor mass surgery, radiation therapy is regularly taken into account the gold standard for the treatment. Kilo to Mega voltage photons have been suggested due to their characteristic depth dose build-up regime, reducing the dose to the breast skin to a fraction of the maximum dose exposure. During treatment, mean glandular dose is commonly used as a criterion for identifying radiation risks. Here, two outlines in cubic-rectangular (CR) and cylindrical- taper (CT) outlines were modelled together with corresponding assumptions using Monte-Carlo simulation and the recorded absorbed dose ratio (ADR) values were compared via defined a positron source by 511 keV energy. The results showed that the amounts of absorption and scattering cross-sections next to the ADR amount decreased as the height of the CR outline decreased. The average dose ratio amount in the CR outline was reduced by about 96% compared to that in the CT outline. By increasing the positron source distance from the nipple, the ADR amounts decreased for both outlines. The amount of accumulated dose ratio decreased harshly in the CR outline rather than in the CT outline. This study can be useful to examine breast tissue deformity in treatment planning.
Downloads
Referências
Joe, B. N.; Lee, A. Y. Breast Imaging, E-Book: The Core Requisites. Elsevier Health Sciences, 2022.
Gershenson, D. M.; Lentz, G. M.; Valea, F. A.; Lobo, R. A. Comprehensive Gynecology. Elsevier Health Sciences, 2021.
Winters, S.; Martin, C.; Murphy, D.; Shokar. N. K. Breast Cancer Epidemiology, Prevention, and Screening. Progress in Molecular Biology and Translational Science, v. 151, p. 1-32, 2017. https://doi.org/10.1016/bs.pmbts.2017.07.002
Feng, Y. et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases, v. 5, p. 77-106, 2018. https://doi.org/10.1016/j.gendis.2018.05.001
Oscar, A.; Villarreal, M.; Velasco, F. G.; Fausto, A. M. F.; Mas Milian, F.; Mol, A. W.; Capizzi, K. R.; Ambrosio, P. Optimization of the exposure parameters in digital mammography for diverse glandularities using the contrast-detail metric. Physica Medica, v. 101, p. 112-119, 2022. https://doi.org/10.1016/j.ejmp.2022.08.009
Fitton, I.; Noël, A.; Minassian, J.; Zerhouni, M.; Wojak, J.; Adel, M.; Fournier, L. Technical note: Design and initial evaluation of a novel physical breast phantom to monitor image quality in digital breast tomosynthesis. Medical Physics, v. 49, p. 2355-2365, 2022. https://doi.org/10.1002/mp.15498
Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages. Applied Sciences, v. 12, p. 3273, 2022. https://doi.org/10.3390/app12073273
Altameem, A.; Mahanty, C.; Poonia, R. C.; Saudagar, A. K. J.; Kumar, R. Breast Cancer Detection in Mammography Images Using Deep Convolutional Neural Networks and Fuzzy Ensemble Modeling Techniques. Diagnostics, 12, p. 1812, 2022. https://doi.org/10.3390/diagnostics12081812
Balleyguier, C.; Cousin, M.; Dunant, A.; Attard, M.; Delaloge, S.; Arfi-Rouche, J. Patient-assisted compression helps for image quality reduction dose and improves patient experience in mammography. European Journal of Cancer, v. 103, p. 137-142, 2018. https://doi.org/10.1016/j.ejca.2018.08.009
Pelowitz, D. B. editor. MCNPX user's manual version 2.6.0, LA-CP-07-1473. New Mexico, United States: Los Alamos National Laboratory (LANL), 2008.
Authors on behalf of ICRP, Eckerman, K.; Harrison, J.; Menzel H. G.; Clement C. H. ICRP Publication 119: Compendium of Dose Coefficients based on ICRP Publication 60. Ann ICRP, v. 42, p. e1-e130, 2013. doi: 10.1016/j.icrp.2013.05.003
Evaluated Nuclear Data File; 2009. Available at: https://www-nds.iaea.org/public/download-endf/ENDF-B-VII.0/. Last accessed: 2009 -01-18.
Velden, B. H. M.; Vos, B. D.; Loo, C. E.; Kuijf, H. J.; Isgum, I.; Gilhuijs, K. G. A. Response monitoring of breast cancer on DCE-MRI using convolutional neural network-generated seed points and constrained volume growing. Proc SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109500D, 13 March 2019. doi: 10.1117/12.2508358
Buonanno, F.; Sarno, A.; De Lucia, P. A.; Di Lillo, F.; Masi, M.; Di Franco, F.; Mettivier, G.; Russo, P. Rotational radiotherapy of breast cancer with polyenergetic kilovoltage X-ray beams: An experimental and Monte Carlo phantom study. Physica Medica, v. 62, p. 63-72, 2019. doi: 10.1016/j.ejmp.2019.05.002
Svahn, T. M.; Houssami, N.; Sechopoulos, I.; Mattsson, S. Review of radiation dose estimates in digital breast tomosynthesis relative to those in two-view full-field digital mammography. Breast, v. 24, p. 93-9, 2015 doi: 10.1016/j.breast.2014.12.002
Maajani, K.; Jalali, A.; Alipour, S.; Khodadost, M.; Tohidinik, H. R.; Yazdani, K. The Global and Regional Survival Rate of Women with Breast Cancer: A Systematic Review and Meta-analysis. Clin Breast Cancer, v. 19, p. 165-177, 2019. doi: 10.1016/j.clbc.2019.01.006
Nakamura, T.; Suzuki, S.; Takei, Y.; Kobayashi, I.; Pongnapang, N.; Kato, K. Simultaneous measurement of patient dose and distribution of indoor scattered radiation during digital breast tomosynthesis. Radiography, v. 25, p. 72-76, 2019. doi: 10.1016/j.radi.2018.10.006
Choi, J. S.; Rim, C. H.; Kim, Y. B.; Yang, D. S. Cumulative radiation exposure dose of diagnostic imaging studies in breast cancer patients. Inte J Radiat Res, v. 17, p. 275-281, 2019. doi: 10.18869/acadpub.ijrr.17.2.275
Khorshidi, A. Accelerator driven neutron source design via beryllium target and 208Pb modera-tor for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method. Journal of Cancer Research and Therapeutics, v. 13, p. 456-465, 2017. doi: 10.4103/0973-1482.179180.
Khorshidi, A. Nano Yttrium-90 and Rhenium-188 production through medium medical cyclo-tron and research reactor for therapeutic usages: A Simulation study. Nuclear Engineering and Technology, v. 55, p. 1871-1877, 2023. doi: 10.1016/j.net.2023.02.013
Khorshidi, A. Segmentation of tumor region in respiratory disease by extended algorithm. In-ternational Journal of Modern Physics C, 2023; In Press. doi: 10.1142/S0129183123501644
Khorshidi, A. Assessment of SPECT images using UHRFB and other low-energy collimators in brain study by Hoffman phantom and manufactured defects. The European Physical Journal Plus, v. 135, p. 261, 2020. doi: 10.1140/epjp/s13360-020-00238-6
Souza, G. C. de A.; Gontijo, R. M. G.; Silva, J. B. da; Mamede, M.; Ferreira, A. V. Spatial re-solution of a preclinical PET tomograph. Brazilian Journal of Radiation Sciences, v. 9(1A), 2021. https://doi.org/10.15392/bjrs.v9i1A.1503
Bispo, A. C. de A.; Nascimento, L. T. C. do; Castro, A. C. F.; Lima, L. A. R.; Ferreira, S. M. Z. M. D.; Silva, J. B. da; Mamede, M. Synthesis and characterization of the radiopharmaceutical [18F]fluoroestradiol. Brazilian Journal of Radiation Sciences, v. 9(1A), 2021. https://doi.org/10.15392/bjrs.v9i1A.1387
Paiva, F. G.; Santana, P. C.; Mourão Filho, A. P. Patient dose reduction by changing the amount of 18F-FDG radiopharmaceutical injected. Brazilian Journal of Radiation Sciences, v. 7(2A (Suppl.), 2019. https://doi.org/10.15392/bjrs.v7i2A.704
Pessanha, P. R.; de Queiroz Filho, P. P.; Santos, D. de S. Dosimetric evaluation of extremities in 18F-FDG PET/CT procedure using Monte Carlo Geant4 code. Brazilian Journal of Radiation Sciences, v. 7(3B (Suppl.), 2019. https://doi.org/10.15392/bjrs.v7i3B.890
Santana de Souza, S. A.; Monteiro Rodrigues, F.; Fattori Alves, A. F.; Alvarez, M.; Molena Seraphim, D.; Lopes Ruiz Junior, R.; Souza Trindade Filho, J. C.; Marrone Ribeiro, S.; Pina, D. R. Quality and Quantity Assessment of Tomographic Exams That Can Be Performed on Existing Hybrid Equipment at Botucatu Medical School Nuclear Medicine Services. Brazilian Journal of Radiation Sciences, v. 10(2), 2022. https://doi.org/10.15392/bjrs.v10i2.1799.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2023 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/