Avaliação de ETR no Solo em Área de Mineração de Umuahia, Estado de Abia, Sudeste da Nigéria por Análise por Ativação Neutrônica Instrumental (INAA)

Autores

  • M. E. Onudibia Federal University Wukari / IPEN / CRPq , ,
  • P. S. C. Silva IPEN / CRPq / USP , IPEN / CRPq / USP , IPEN / CRPq / USP
  • A.A. Essiett University of Uyo, Nigeria , ,
  • G. S. Zahn IPEN / CRPq / USP , ,
  • F. A. Genezini IPEN / CRPq / USP , ,
  • H. M. S. M. D Linhares IPEN / CRPq / USP , ,
  • N. C. Nnamani Ahmadu Bello University, Nigeria , ,
  • M. C. Bede
  • F. O. Okoh Federal University Wukari, Nigeria , ,
  • E. E. Imeh University of Uyo, Nigeria , ,
  • C. M. Odoh Federal University Wukari, Nigeria , ,

DOI:

https://doi.org/10.15392/2319-0612.2024.2336

Palavras-chave:

elementos de terras raras, solo de mineração de argila, Umuahia, Nigéria, geoacumulação

Resumo

Neste trabalho, o objetivo principal foi examinar a concentração e o padrão de distribuição de elementos terras raras (ETR) no solo de Umuahia, Estado de Abia, do Sudeste da Nigéria, num local de mineração de argila em comparação com um local não contaminado a aproximadamente 3 km de distância. Os ETR foram determinados por Análise por ativação neutrônica instrumental (INAA) no IPEN, Brasil. A mineralogia principal das amostras foi determinada por difração de raios-X. Foram determinados os seguintes ETR: Ce, Eu, La, Lu, Nd, Sm, Tb e Yb. As amostras de solo da área de mineração apresentam quartzo e caulinita como principais constituintes, com concentrações de ETR comparáveis às da crosta continental superior e do composto de xisto norte-americano. O índice de geoacumulação calculado (IGeo) indica que os ETR têm origem natural e a relação ∑LETR/∑PETR mostra um enriquecimento dos ETR leves em relação aos pesados, em amostras da área de mineração de argila.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

SANTANA, M. L. T.; CARVALHO, K. M.; PEIXOTO, A. U. S.; JUNIOR CESAR, M. E.; VAN ES, H. M., CURI, N.; MONTOANI, B. Interactions between Land Use and Soil Type Drive Soil Functions, Highlighting Water Recharge Potential, in the Cantareira System, Southeast of Brazil. Sci Total Environ, v. 903, p. 166125, 2023. DOI: https://doi.org/10.1016/j.scitotenv.2023.166125

MULYONO, A.; SETIAWAN, I.; HIDAYAT, E.; NOVIARDI, R. ‘Distribution and Potential Contamination Assessment of Rare Earth Elements (REE) in Indonesian Volcanic Soil’. Acta Ecol Sin, p. 1-10, 2023. DOI: https://doi.org/10.1016/j.chnaes.2023.05.010

Oladipo, H. J., Tajudeen, Y. A.; Taiwo, E. O.; Muili, A. O.; Yusuf, R. O.; Jimoh, S. A.; Oladipo, M. K.; Oladunjoye, I. O.; Egbewande, O. M.; Sodiq, Y. I.; Ahmed, A. F.; El-Sherbini, M. S. ‘Global Environmental Health Impacts of Rare Earth Metals: Insights for Research and Policy Making in Africa’. Challenges, v. 14(20), p. 1-13, 2023. DOI: https://doi.org/10.3390/challe14020020

ILEVBARE, M. ‘Rare Earth Elements of Ajali Sandstone, SW, Anambra Basin in Nigeria: Implication for Soil Genesis’. J Appl Sci Environ Manag, v. 24(11), p. 1999–2004, 2021. DOI: https://doi.org/10.4314/jasem.v24i11.22

MALHOTRA, N.; HSU, H. S.; LIANG, S. T.; ROLDAN, M. J. M.; LEE, J. S.; GER, T. R.; HSIAO, C. D. An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms’. Animals, v. 10(9), p. 1–27, 2020. DOI: https://doi.org/10.3390/ani10091663

HAQUE, N.; HUGHES, A.; LIM, S.; VERNON, C. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources, v. 3(4), p. 614–35, 2014. DOI: https://doi.org/10.3390/resources3040614

SOLTANI, F.; ABDOLLAHY, M.; PETERSEN, J.; RAM, R.; KOLEINI, S. M. J.; MORADKHANI, D. Leaching and Recovery of Phosphate and Rare Earth Elements from an Iron-Rich Fluorapatite Concentrate: Part II: Selective Leaching of Calcium and Phosphate and Acid Baking of the Residue’. Hydrometallurgy, v 184, p. 29–38, 2019. DOI: https://doi.org/10.1016/j.hydromet.2018.12.024

ZEPF, V. Rare Earth Elements: What and Where They Are. In: Rare Earth Elements. Springer Theses. Springer, Berlin, Heidelberg, p 11–39, 2013. DOI: https://doi.org/10.1007/978-3-642-35458-8_2

PAGANO, G.; THOMAS, P. J.; NUNZIO, A.; TRIFUOGGI, M. Human Exposures to Rare Earth Elements: Present Knowledge and Research Prospects. Environ Res, v. 171, p. 493–500, 2019. DOI: https://doi.org/10.1016/j.envres.2019.02.004

ELIAS, M. S., AZMAN, M. A.; DAUNG, J. A. D.; HASHIM, A.; LAILI, Z.; OMAR, S. A.; SHUKOR. S. Assessment of Rare Earth and Actinides (U and Th) Elements in Soil Samples from Kapar Industrial Area, Selangor’. IOP Conf Ser: Mater Sci Eng, v. 1231(1), p. 1-12, 2022. DOI: https://doi.org/10.1088/1757-899X/1231/1/012017

KHADHAR, S.; SDIRI, A.; CHEKIRBEN, A.; AZOUZI, R.; CHAREF, A. Integration of Sequential Extraction, Chemical Analysis and Statistical Tools for the Availability Risk Assessment of Heavy Metals in Sludge Amended Soils. Environ Pollut, v. 263, p. 114543, 2020. DOI: https://doi.org/10.1016/j.envpol.2020.114543

OMODARA, L.; PITKÄAHO, S.; TURPEINEN, E.; SAAVALAINEN, P.; ORAVISJÄRVI, K.; KEISKI, R. L. Recycling and Substitution of Light Rare Earth Elements, Cerium, Lanthanum, Neodymium, and Praseodymium from End-of-Life Applications - A Review. J Clean Prod, v. 236, p. 117573, 2019. DOI: https://doi.org/10.1016/j.jclepro.2019.07.048

ARRACHART, G.; COUTURIER, J.; DOURDAIN, S.; LEVARD, C.; PELLET-ROSTAING, S. ‘Recovery of Rare Earth Elements (REEs) Using Ionic Solvents’. Processes, v. 9(7), p. 1202, 2021. DOI: https://doi.org/10.3390/pr9071202

ODOMA, A. N., OBAJE, N. G.; OMADA, J. I.; IDAKWO, S. O.; ERBACHER, J. Mineralogical, Chemical Composition and Distribution of Rare Earth Elements in Clay-Rich Sediments from Southeastern Nigeria. J African Earth Sci, v.102, p. 50–60, 2015. DOI: https://doi.org/10.1016/j.jafrearsci.2014.10.013

KASIMBAZI, E. Chapter 31: Regulating Environmental Impacts Associated with Mining in Uganda. in Law | Environment | Africa., p. 665–96, 2019. DOI: https://doi.org/10.5771/9783845294605-665

FAANU, A.; EPHRAIM, J. H.; DARKO, E. O. Assessment of Public Exposure to Naturally Occurring Radioactive Materials from Mining and Mineral Processing Activities of Tarkwa Goldmine in Ghana’. Environ Monit Assess, v. 180(1–4), p. 15–29, 2011. DOI: https://doi.org/10.1007/s10661-010-1769-9

IAEA, INTERNATIONAL ATOMIC ENERGY AGENCY. Measurement of Radionuclides in Food and the Environment - Technical Reports Series No. 295, 1989.

IAEA, INTERNATIONAL ATOMIC ENERGY AGENCY. Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation, Technical Reports Series No. 41, 2003.

ZAHN, G. S.; JUNQUEIRA, L. S.; GENEZINI, F. A. CAX and Xsel: A Software Bundle to Aid in Automating NAA Spectrum Analysis. Braz J Radiat Sci, 7(2A). DOI: https://doi.org/10.15392/bjrs.v7i2A.565

JENA, V.; GHOSH, S.; PANDE, A.; MALDINI, K.; MATIC, N. 2019. Geo-Accumulation Index of Heavy Metals in Pond Water Sediment of Raipur. Biosci Biotechnol Res Commun, v. 12(3), p. 733–36, 2019. DOI: https://doi.org/10.21786/bbrc/12.3/27

MULLER, G. ‘Index of Geoaccumulation in Sediments of the Rhine River’. GeoJournal v. 2, p. 108 – 18, 1969.

TIMOTHY, M. N.; MARCUS, A. C.; IYAMA, W. A. Assessment of Trace Metal Content in Soils of Automobile Workshops around Bori Urban Area, Rivers State, Nigeria. Eur j appl sci, v. 10(3), p. 209 – 221, 2022. DOI: https://doi.org/10.14738/aivp.103.12175

ALGÜL, F; BEYHAN. M. Concentrations and Sources of Heavy Metals in Shallow Sediments in Lake Bafa, Turkey’. Sci Rep, v. 10(1), p.11782, 2020. DOI: https://doi.org/10.1038/s41598-020-68833-2

LIN, R., BANK, T. L., ROTH, E. A., GRANITE, E. J., SOONG, Y. Organic and inorganic associations of rare earth elements in central Appalachian coal, Int J Coal Geol, v. 179, p. 295-301, 2017. DOI: https://doi.org/10.1016/j.coal.2017.07.002

IMASUEN, O. I.; FYFE, W. S.; OLORUNFEMI, B. N.; ASUEN, G. O.; Zonal Mineralogical/Geochemical Characteristics of Soils of Midwestern Nigeria.” J African Earth Sci, v. 8(1), p. 41–49, 1989. DOI: https://doi.org/10.1016/S0899-5362(89)80007-7

ZHANG, K.; SHIELDS, G. A. “Early Diagenetic Mobilization of Rare Earth Elements and Implications for the Ce Anomaly as a Redox Proxy. Chem Geol, v. 635, p. 121619, 2023. DOI: https://doi.org/10.1016/j.chemgeo.2023.121619

LIDMAN, F., LAUDON, H.; TABERMAN, I.; KÖHLER, S. Eu Anomalies in Soils and Soil Water from a Boreal Hillslope Transect – A Tracer for Holocene Lanthanide Transport? Geochim Cosmochim Acta, v. 267, p.147–63, 2019. DOI: https://doi.org/10.1016/j.gca.2019.09.014

HENDERSON, P. Rare Earth Element Geochemistry. Rare Earth Element Geochemistry. 2nd ed. London, 1983.

BARRAT, J. A., BAYON, G.; LALONDE. S. Calculation of Cerium and Lanthanum Anomalies in Geological and Environmental Samples. Chem Geol, v. 615, p. 121202, 2023. DOI: https://doi.org/10.1016/j.chemgeo.2022.121202

ANDRADE, G. R. P.; JAVIER CUADROS, J. M. P. B.; VIDAL-TORRADO, P. Clay Minerals Control Rare Earth Elements (REE) Fractionation in Brazilian Mangrove Soils. Catena, v. 209(P2), p. 105855, 2022. DOI: https://doi.org/10.1016/j.catena.2021.105855

GUIMAPI, N. T.; TEMATIO, P.; TIOMO, I. F.; HAPPI, F. D.; FOTSO, A. K.; TCHAPTCHET, C. W. T. “Redistribution and Fractionation of Trace and Rare Earth Elements during Weathering and Lateritization of Orthogneiss in Ndokayo (Bétaré-Oya Gold District, South East Cameroon).” Geoderma Reg, v. 32, p. e00601, 2023. DOI: https://doi.org/10.1016/j.geodrs.2022.e00601

Publicado

28-02-2024

Edição

Seção

Artigos

Como Citar

Avaliação de ETR no Solo em Área de Mineração de Umuahia, Estado de Abia, Sudeste da Nigéria por Análise por Ativação Neutrônica Instrumental (INAA). Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 1, p. e2336, 2024. DOI: 10.15392/2319-0612.2024.2336. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2336. Acesso em: 8 ago. 2025.