Aplicação do Método de Aproximação por Funções Constantes por Partes na Cinética Pontual Modificada

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2588

Palavras-chave:

reatividade, cinética pontual, PCA, tempo de relaxação

Resumo

O presente trabalho utiliza o método numérico conhecido como “Piecewise Constant Approximation”, PCA, na solução das equações da cinética pontual modificada para seis grupos de precursores de nêutrons atrasados. A cinética pontual modificada corresponde ao modelo da cinética pontual sem considerar a aproximação para a derivada do logaritmo da corrente. Aplicando-se o método PCA, a função reatividade é aproximada para funções contínuas por partes, e o sistema de equações diferenciais de primeira ordem resultante pode ser resolvido de maneira exata em cada partição do tempo. Para validação, são feitas simulações numéricas para os casos de reatividade constante, tipo degrau, e reatividade variante no tempo, tipo rampa e os resultados são comparados com os obtidos pelo método de diferenças finitas. A análise quantitativa dos resultados mostra que o método PCA pode ser empregado para obter, com eficiência, bons resultados também na cinética pontual modificada.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

DUDERSTADT, J. J.; HAMILTON, L. J. Nuclear Reactor Analysis. New York, US: John Wiley & Sons, 1976.

BROWN, H.D. A general treatment of flux transients. Nuclear Science and Engineering, 2, p. 687-693, 1957.

AKCASU, Z. General solution of the reactor kinetic equations without feedback. Nuclear Science and Engineering, 3, p. 456-467, 1958.

HANSEN, K.F., Koen, B.V., Little, W.W. Stable numerical solutions of the reactor kinetics equations. Nuclear Science and Engineering, 22, p. 51-59, 1965.

HAYASAKa, H., Takeda, S. Study of neutron wave propagation. Journal of Nuclear Science and Technology, 5, p. 564-571, 1968.

GOLDSTEIN, R., SHOTKIN, L.M. Use of the prompt-jump approximation in fast reactor kinetics. Nuclear Science and Engineering, 38, p. 94-103, 1969.

DA Nobrega, J.A.W. A new solution of the point kinetics equations. Nuclear Science and Engineering, 46, p. 366-375, 1971.

HETRICK, D.L. Dynamics of Nuclear Reactors. Chicago, US: The University of Chicago Press, 1971.

KANG, C.M., HANSEN, K.F. Finite element methods for reactor analysis. Nuclear Science and Engineering, 51, p. 456-495, 1973.

HENNART, J.P. Piecewise polynomial approximations for nuclear reactor point and space kinetics. Nuclear Science and Engineering, 64, p. 875-901, 1977.

CHAO, Y.A., ATTARD, A. A resolution of the stiffness problem of reactor kinetics. Nuclear Science and Engineering, 90, p. 40-46, 1985.

GUPTA, H.P., TRASI, M.S. Asymptotically stable solutions of point-reactor kinetics equations in the presence of Newtonian temperature feedback. Annals of Nuclear Energy, 4, p. 203-207, 1986.

SANCHEZ, J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods. Nuclear Science and Engineering, 103, p. 94–99, 1989.

BEHRINGER, K., PIÑEYRO, J., MENNIG, J. Application of the Wiener-Hermite functional method to point reactor kinetics driven by random reactivity fluctuations. Annals of Nuclear Energy, 17, 643-656, 1990.

BUZANO, M.L., CORNO, S.E., CRAVERO, I. A new procedure for integrating the point kinetic equations for fission reactors. Computers & Mathematics with Applications, 29, p. 5–19, 1995.

BASKEN, J., LEWINS, J. Power series of the reactor kinetics equations. Nuclear Science and Engineering, 122, p. 407-416, 1996.

KOCLAS, J., SISSAOUI, M.T., HEBERT, A. Solution of the improved and generalized quasistatic methods using an analytic calculation or a semi-implicit scheme to compute the precursor equations. Annals of Nuclear Energy, 23 (14), p. 1127-1142, 1996.

HASHIMOTO, K., IKEDA, H., TAKEDA, T. Numerical instability of time-discretized one-point kinetic equations. Annals of Nuclear Energy, 27, p. 791-803, 2000.

ABOANBER, A.E., HAMADA, Y.M. PWS: an efficient code system for solving space-independent nuclear reactor dynamics. Annals of Nuclear Energy, 29, p. 2159-2172, 2002.

KINARD, M., ALLEN, K.E.J. Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 31, p. 1039-1051, 2004.

HAYES, J.G., ALLEN, E.J. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, p. 572-587, 2005.

DULLA, S., NICOLINO, C., RAVETTO, P. Reactivity oscillation in source driven systems. Nuclear Engineering and Technology, 38, p. 657-664, 2006.

CHEN, W.Z., GUO, L.F., ZHU, B., LI, H. Accuracy of analytical methods for obtaining supercritical transients with temperature feedback. Progress in Nuclear Energy, 49, p. 290-302, 2007.

NAHLA, A.A. Analytical solution to solve the point reactor kinetics equations. Nuclear Engineering and Design, 240, p. 1622-1629, 2010.

ESPINOSA-PAREDES, G., POLO-LABARRIOS, M., ESPINOSA-MARTINEZ, E., VALLE-GALLEGOS, E. Fractional neutron point kinetics equations for nuclear reactor dynamics. Annals of Nuclear Energy, 38, p. 307-330, 2011.

NUNES, A. L. A Influência da Aproximação Referente à Derivada da Corrente de Nêutrons nas Equações da Cinética Pontual. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brazil, 2015.

ALTAHHAN, M.R., NAGY, M.S., ABOU-GABAL, H.H., ABOANBER, A.A. Formulation of a point kinetics model based on the neutron telegraph equation. Annals of Nuclear Energy, 91, p. 176–188, 2016.

ESPINOSA-PAREDES, G. Fractional-space neutron point kinetics (F-SNPK) equations for nuclear reactor dynamics. Annals of Nuclear Energy, 107, p. 136-143, 2017.

HAMADA, Y.M. Modified fractional neutron point kinetics equations for finite and infinite medium of bar reactor core. Annals of Nuclear Energy, 106, p. 118-126, 2017.

DINIZ, R.C., GONÇALVES, A.C., DA ROSA, F.S.S. Adjusted mean generation time parameter in the neutron point kinetics equations. Annals of Nuclear Energy, 133, p. 338-346, 2019.

Publicado

20-12-2024

Edição

Seção

Artigos

Como Citar

Aplicação do Método de Aproximação por Funções Constantes por Partes na Cinética Pontual Modificada. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2588, 2024. DOI: 10.15392/2319-0612.2024.2588. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2588. Acesso em: 16 jul. 2025.