Caracterização do material de aplicador para tratamento de lesões superficiais em braquiterapia
DOI:
https://doi.org/10.15392/2319-0612.2024.2611Palavras-chave:
Braquiterapia, lesões superficiais, dimetil polissiloxano, aplicadorResumo
O tratamento de lesões superficiais por braquiterapia é realizado utilizando fontes radioativas posicionadas no interior de tumores ou a uma curta distância destes, para deposição da dose prescrita no volume alvo. No caso de tratamento de lesões na pele, em função da proximidade entre a fonte e a superfície do paciente, é importante o uso de aplicadores que conduzem a fonte de radiação até a região a ser tratada, garantindo a segurança e a higiene do processo. O tratamento de queloides, por exemplo, pode ser conduzido por braquiterapia. Considerando que os aplicadores devem passar por um rigoroso controle de qualidade, este trabalho apresenta uma avaliação de um aplicador desenvolvido para o tratamento de lesões de pele, constituído de quinze esferas de material sintético, para uso em equipamento High dose rate brachytherapy (HDR), modelo Nucletron Digital V3, dotado de uma fonte de Ir-192. Considerou-se importante determinar se as esferas são adequadas para uso médico, contato direto com a pele do paciente e métodos de esterilização. Além disso, se fez necessário considerar a resistência do material ao processo de irradiação, uma vez que as esferas devem ser utilizadas em múltiplas aplicações. Neste sentido, estabeleceu-se a necessidade de definir de que material as esferas são constituídas e, através dessa caracterização, considerar sua adequação ao uso proposto. Como as esferas foram adquiridas com especificações genéricas, este trabalho teve por objetivo realizar análises para caracterização do material, definindo sua composição. Por consequência, teve como foco avaliar seu uso seguro para compor o aplicador de braquiterapia.
Downloads
Referências
[1] SALVAJOLI, J. V. et al. Radioterapia em Oncologia. 2. ed. São Paulo: Atheneu, 2013. p. 161-218. ISBN-10. 8538803816.
[2] SKOWRONEK, J. Brachytherapy in the treatment of skin cancer: an overview. Advances in Dermatology and Allergology/Post¸epy Dermatologii i Alergologii, Termedia Publishing, v. 32, n. 5, p. 362-367, 2015.
[3] DAURADE, M. et al. Efficacy of surgical excision and brachytherapy in the treatment of keloids: A retrospective cohort study. Advances in Skin & Wound Care, LWW, v. 33, n. 11, p. 1–6, 2020.
[4] OHTA, M. et al. Verification of evaluation accuracy of absorbed dose in the dose-evaluation system for Iridium-192 brachytherapy for treatment of keloids. Biomedical Physics & Engineering Express, IOP Publishing, v. 4, n. 2, p. 025022, 2018.
[5] BIJLARD, E. et al. Burden of keloid disease: a cross-sectional health-related quality of life assessment. Acta dermato-venereologica, v. 97, n. 2, p. 225–229, 2017.
[6] HOANG, D. et al. Surgical excision and adjuvant brachytherapy vs external beam radiation for the effective treatment of keloids: 10-year institutional retrospective analysis. Aesthetic surgery journal, Oxford University Press, v. 37, n. 2, p. 212–225, 2017.
[7] KHAN, F. M.; GIBBONS, J. P. Khan’s the physics of radiation therapy. 5. ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2014. ISBN 978-1-4511-8245-3.
[8] WEN, A. et al. Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers, v. 14, n. 19, 2022. ISSN 2072-6694.
[9] ALMUQRIN, A. H. et al. Exploring the impact of Bi2O3 particle size on the efficacy of dimethylpolysiloxane for medical gamma/X-rays shielding applications. Radiation Physics and Chemistry, v. 220, p. 111629, 2024.
[10] GOUDA, M. M.; ZARD, K. An extensive investigation on gamma shielding properties of dimethylpolysiloxane modified with nano sized SnO2 and CdO. Radiation Physics and Chemistry, v. 218, p. 111588, 2024.
[11] GOUDA, M. M. et al. Nano tin oxide/dimethyl polysiloxane reinforced composite as a flexible radiation protecting material. Scientific Reports, v. 13, n. 1, p. 210, 2023.
[12] DONG, F. et al. Thermal degradation kinetics of functional polysiloxane with pendent γ-chloropropyl groups. Polymer Bulletin, v. 78, p. 1-14, 2021.
[13] STEINBACH, J. C. et al. A process analytical concept for in-line FTIR monitoring of polysiloxane formation. Polymers, v. 12, n. 11, p. 2473, 2020.
[14] WÓJCIK-BANIA, M. Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes–FTIR studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 252, p. 119491, 2021.
[15] DESHPANDE, G., REZAC, M. E. Kinetic aspects of the thermal degradation of poly (dimethyl siloxane) and poly (dimethyl diphenyl siloxane). Polymer Degradation and Stability, v. 76, n. 1, p. 17-24, 2002.
[16] REDONDO, S. U. A. et al. Estudo da decomposição térmica de compósitos fibras de celulose/silicona. In: Proceedings of the 2002 Congresso Brasileiro de Engenharia e Ciências dos Materiais, Natal, 09 a 13 de novembro, vol. 1, pp. 1692-1698, 2002.
[17] LIU, B. et al. Gamma irradiation-induced degradation of silicone encapsulation. Materials Today Communications, v. 31, p. 103476, 2022.
[18] TALLEY, S. J. et al. Flexible 3D printed silicones for gamma and neutron radiation shielding. Radiation Physics and Chemistry, v. 188, p. 109616, 2021.
[19] MAEYAMA, T. et al. Development of a silicone-based radio-fluorogenic dosimeter using dihydrorhodamine 6G. Physica Medica, v. 114, p. 102684, 2023.
[20] CARTURAN, S. M. et al. Additive manufacturing of high-performance, flexible 3D siloxane-based scintillators through the sol-gel route. Applied Materials Today, v. 39, p. 102313, 2024.
Downloads
Publicado
Edição
Seção
Categorias
Licença
Direitos autorais (c) 2024 Juan Carlos Chrisostomo Lamônica, Marcela Morais Freitas, Mariana Oliveira Reis, Luciana Batista Nogueira, Jony Marques Geraldo, Clara B Nascimento, Arnoldo Mafra, Adriana de Souza Medeiros Batista

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/