Dosimetria para Radioterapia FLASH: Uma revisão dos sistemas dosimétricos

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2620

Palavras-chave:

radioterapia FLASH, revisão de literatura, sistemas dosimétricos

Resumo

A radioterapia FLASH (FLASH-RT) é uma abordagem promissora para o tratamento do câncer, caracterizada pela administração de altas doses de radiação em um curto período de tempo, em frações de segundos. Para demonstrar o efeito FLASH, são necessárias doses únicas elevadas de radiação administradas em tempos muito curtos através de um número limitado de pulsos. Estudos anteriores relataram que o tratamento FLASH-RT pode resultar em aumento da sobrevivência celular em comparação com a radioterapia convencional. Este artigo tem como objetivo realizar uma pesquisa bibliográfica abrangente sobre dosimetria em radioterapia FLASH, uma técnica emergente e promissora no campo da radioterapia. Serão discutidos alguns dos dosímetros mais utilizados em estudos recentes para radioterapia FLASH, incluindo câmaras de ionização, detectores de diamante, filmes radiocrômicos, filmes radiocrômicos EBT3 e dosímetros termoluminescentes. Serão analisados ​​os principais parâmetros de dosimetria utilizados nos tratamentos radioterápicos FLASH, com ênfase nas características e aplicabilidade dos diferentes tipos de dosímetros utilizados.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] Bourhis, J. et al. Clinical translation of FLASH radiotherapy: Why and how? Radiotherapy and Oncology, v. 139, p. 11–17, 2019.

[2] Roger J. Berry, Eric J. Hall, David W. Forster, Thomas H. Storr, Michael J. Goodman, Survival of mammalian cells exposed to X rays at ultra-high dose-rates, British Journal of Radiology, v. 42, Issue 494, p. 102–107, https://doi.org/10.1259/0007-1285-42-494-102, 1969.

[3] Rama N., et al. Improved tumor control through t-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system Int. J. Radiat. Oncol. Biol. Phys. v. 105, p. S164–S5, 2019.

[4] Favaudon, V., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med, v. 6, 2014.

[5] Montay-Gruel P. et al. 2017 Irradiation in a flash: unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s Radiother. Oncol. v. 124 p. 365–369.

[6] Vozenin M.-C. et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. (in press) https://doi.org/10.1158/1078-0432.CCR-17-3375, 2018.

[7] Esplen, N.; Mendonca, M. S.; Bazalova-Carter, M. Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine and Biology, v. 65, n. 23, p. 23TR03, 2020.

[8] Schüller, A. et al. The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. v. 80, p. 134–150, 2020.

[9] Montay-Gruel, P. et al. X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. v. 129, n. 3, p. 582–588, 2018.

[10] Lempart M. et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiother. Oncol. v. 139, p. 40–45, 2019.

[11] Bazalova-Carter M. and Esplen N. On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates Med. Phys. v. 46, p.5690–5695, 2019.

[12] Patriarca A. et al. Experimental set-up for FLASH proton irradiation of small animals using a clinical system Int. J. Radiat. Oncol. Biol. Phys. v. 102, p. 619–626, 2018.

[13] Esplen N.; Egoriti L.; Gottberg A. and Bazalova-Carter M. Strategies for the delivery of spatially fractionated radiotherapy using conventional and FLASH-capable sources: scientific session 1: YIS–07 Med. Phys. v. 46, 5373, 2019.

[14] Maxim P. G.; Keall P. and Cai J. FLASH radiotherapy: newsflash or flash in the pan? Med. Phys. v. 46, p. 4287–4290, 2019.

[15] Khan, F. M. The Physics of Radiation Therapy (5ª ed.). Lippincott Williams & Wilkins, 2014.

[16] Almond P. R.; Biggs P. J.; Coursey B.; Hanson W.; Huq M. S.; Nath R. and Rogers D. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Med. Phys. v. 26, p. 1847–1870, 1999.

[17] Andreo P.; Burns D. T.; Hohlfeld K.; Huq M. S.; Kanai T.; Laitano F.; Smyth V. and Vynckier S. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water Vienna (Austria): IAEA Technical Report Series, 2000.

[18] McEwen M.; Dewerd L.; Ibbott G.; Followill D.; Rogers D. W. O.; Seltzer S. and Seuntjens J. Addendum to the AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon beams Med. Phys. v. 41 p.1–20, 2014.

[19] Burns D. T. and Mcewen M. R. Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam Phys. Med. Biol. v. 43 p. 2033–2045, 1998.

[20] Bruggmoser G.; Saum R.; Schmachtenberg A.; Schmid F. and Schüle E. Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams Phys. Med. Biol. v. 52 p. 35–50, 2007.

[21] Kry S.F.; Popple R.; Molineu A.; Followill D. S. Ion recombination correction factors (P(ion)) for Varian TrueBeam high-dose-rate therapy beams. J Appl Clin Med Phys. 13(6):3803. doi: 10.1120/jacmp.v13i6.3803. PMID: 23149774; PMCID: PMC5718527. 2012.

[22] Karsch, L. et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors. Medical Physics, v. 39, n. 5, p. 2447–2455, 13 abr. 2012.

[23] Petersson K.; Jaccard M.; Germond J. F.; Buchillier T.; Bochud F.; Bourhis J.; Vozenin M. C. and Bailat C. High dose-per-pulse electron beam dosimetry—a model to correct for the ion recombination in the advanced markus ionization chamber Med. Phys. v. 44, p. 1157–1167, 2017.

[24] Gomà C.; Marinelli M.; Safai S.; Verona-Rinati G. and Würfel J. The role of a microDiamond detector in the dosimetry of proton pencil beams Z. Med. Phys. v. 26, p. 88–94, 2016.

[25] Marsolat F.; De Marzi L.; Patriarca A.; Nauraye C.; Moignier C.; Pomorski M.; Moignau F.;, Heinrich S.;, Tromson D. and Mazal A. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams Phys. Med. Biol. v. 61, p. 6413–6429, 2016.

[26] Rink A.; Lewis D. F.; Varma S.; Vitkin I. A. and Jaffray D. A. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium Med. Phys. v. 35 p. 4545–4555, 2008.

[27] Koulouklidis A D, Cohen S and Kalef-Ezra J 2013 Thermochromic phase-transitions of GafChromic films studied by z-scan and temperature-dependent absorbance measurements Med. Phys. 40 112701.

[28] Jaccard, M. et al. High dose‐per‐pulse electron beam dosimetry: Usability and dose‐rate independence of EBT3 Gafchromic films. v. 44(2), p. 725–735. https://doi.org/10.1002/mp.12066, 2017

[29] Kullander, R. C., & Stenström, H. Thermoluminescent Dosimetry Materials: Properties and Uses. Radiation Protection Dosimetry, v. 1(1-4), p. 209-220. doi: 10.1093/rpd/1.1-4.209, 1975.

[30] Jorge G. et al. Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate Radiother Oncol, v. 139, p. 34-39, 10.1016/j.radonc.2019.05.004, ISSN 0167-8140, 2019.

[31] Miles, D.; Sforza, D.; Wong, J. & Rezaee, M. Dosimetric characterization of a rotating anode x-ray tube for FLASH radiotherapy research. Medical Physics, v. 51(2), p. 1474–1483. https://doi.org/10.1002/mp.16609, 2024.

[32] Bourgouin, A., Knyziak, A., Marinelli, M., Kranzer, R., Schüller, A., & Kapsch, R. P. (2022). Characterization of the PTB ultra-high pulse dose rate reference electron beam. Physics in Medicine and Biology, 67(8). https://doi.org/10.1088/1361-6560/ac5de8

Downloads

Publicado

29-01-2025

Como Citar

Dosimetria para Radioterapia FLASH: Uma revisão dos sistemas dosimétricos. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2620, 2025. DOI: 10.15392/2319-0612.2024.2620. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2620. Acesso em: 17 jul. 2025.