High resolution X-ray microtomography as a tool for observation and classification of individual microplastics

Autores

  • Átila de Paiva Teles Federal Institute of Paraná
  • Marcus Vinicius Santos da Silva Technological Center for Sustainable Solutions at mining company / Vale - CTSS
  • Davi Ferreira de Oliveira Universidade Federal do Rio de Janeiro image/svg+xml
  • Ricardo Tadeu Lopes Universidade Federal do Rio de Janeiro image/svg+xml

DOI:

https://doi.org/10.15392/2319-0612.2024.2631

Palavras-chave:

Poluição por Microplasticos, microtomografia computadorizada por raios X, Caracterização por forma, parâmetros morfométricos

Resumo

Os plásticos são polímeros sintéticos amplamente utilizados devido à sua durabilidade, resistência e leveza. No entanto, sua produção extensa e durabilidade resultaram em desafios ambientais, principalmente na acumulação de resíduos plásticos, que se degradam em microplásticos (MPs)—partículas menores que 5 mm. Esses MPs contaminam vários ecossistemas, incluindo corpos d'água, solos e até mesmo a atmosfera. Compreender as estruturas complexas dos MPs é essencial, mas sua heterogeneidade torna a caracterização desafiadora. Este estudo investiga o uso da microtomografia computadorizada por raios X (microCT) como uma ferramenta para caracterizar MPs. Ao escanear fragmentos plásticos embutidos em sedimentos, a microCT fornece dados morfológicos detalhados, internos e externos, de maneira não destrutiva. O volume total medido pela microCT foi de aproximadamente 150,00 mm³, correspondendo a 79% do volume teórico estimado, com uma área de superfície total de 1061,00 mm². A análise focou em parâmetros morfométricos como diâmetro de Feret, grau de anisotropia e esfericidade, que descrevem a forma e a simetria das partículas individuais. Os resultados indicaram variabilidade significativa nesses parâmetros, refletindo a natureza diversa dos MPs. Além disso, a imagem por microCT detectou leves variações na composição do material, indicando potencial heterogeneidade nos polímeros. O estudo destaca a necessidade de padronização na classificação de MPs e sugere que a microCT, com sua capacidade de detectar variações sutis na composição do material, promete ser uma ferramenta valiosa para pesquisas ambientais futuras. A exploração adicional das capacidades da microCT poderia aprimorar nossa compreensão do comportamento e impacto dos MPs, especialmente em relação à sua composição e interações ambientais.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] CANEVAROLO JR, S. V. Estrutura Molecular dos Polímeros. Ciência dos Polímeros: Um texto básico para tecnólogos e engenheiros. São Paulo: Artliber Editora, 2006. p. 35 - 61. ISBN 8588098105.

[2] GANDINI, A.; LACERDA, T. M. From monomers to polymers from renewable resources: recent advances. Progress in Polymer Science, v. 48, p. 1 – 39, 2015.

[3] CHAMAS, A.; MOON, H.; ZHENG, J.; QIU, Y.; TABASSUM, T.; JANG, J. H.; ABU-OMAR, M.; SCOTT, S. L.; SUH, S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry & Engineering, v.8, p. 3494 – 3511, 2020.

[4] KUMAR, R.; VERMA, A.; SHOME, A.; SINHA, R.; JHA, P. K.; KUMAR, R.; KUMAR, P.; SHUBHAM; DAS, S.; SHARMA, P.; PRASAR, P. V. Impacts of Plastic Pollution on Ecossystem Services, Sustainable Development Goals, and need to fous on Circular Economy and Policy Interventions. Sustainability, v. 13. 9963, 2021.

[5] PADERVAND, M.; LICHTFOUSE, E.; ROBERT, D.; WANG, C. Removal of microplastics from the environment. A review. Environmental Chemistry Letters, v. 18, p. 807 – 828, 2020.

[6] AKDOGAN, Z.; GUVEN, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, v. 254, 113011, 1 – 24, 2019.

[7] PIVOKONSKI, M.; CERMAKOVA, L.; NOVOTNA, K.; PEER, P.; CAJHALM, T.; JANDA, V. Occurrence of microplastics in raw and treated drink water. Science of the Total Environment, v. 643, p. 1644 – 1651, 2018.

[8] ZHANG, Y.; PU, S.; LV, X.; GAO, Y.; GE, L. Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, v. 400, 123110, p. 1 – 13, 2020.

[9] RILLIG, M. C.; INGRAFFIA, R.; MACHADO, A. A. S. Microplastic Incorporation into Soil in Agroecosystems. Frontiers in Plant Science, v. 8, 2017.

[10] PRATA, J. C. Airbone microplastics: Consequences to human health? Environmental Pollution, v. 234, p. 115 – 126, 2018.

[11] OBBARD, R. W. Microplastics in Polar Regions: The role of long range transport. Current Opinion in Environmental Science & Health, v. 1, p. 24 – 29. 2018.

[12] AUTA, H. S.; EMENIKE, C. U., FAUZIAH, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, and potential solutions. Environment International, v. 102, p. 165 – 176, 2017.

[13] GUZZETTI, E.; SUREDA, A.; TEJADA, S.; FAGGIO, C. Microplastic in marine organism: Environmental and toxicological effects. Environmental Toxicology and Pharmacology, v. 64, p. 164-171, 2018.

[14] IVLEVA, N. P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews, 121, 11886 – 11936, 2021.

[15] SAGAWA, N.; KAWAAI, K.; HINATA, H. Abundance and size of microplastics in a coastal sea: Comparing among bottom sediment, beach sediment, and surface water. Marine Pollution Bulletin, v. 133, p. 532 – 542, 2018.

[16] TÖTZKE, C.; OSWALD, S. E.; HILGER, A.; KARDJILOV, N. Non-invasive detection and localization of microplastic particles in a sandy sediment by complementary neutron and X-ray tomography. Journal of Soils Sediments, v. 21, p. 1476 – 1487, 2021.

[17] FUNCKE, R. P.; ARAÚJO, O. M. O.; MACHADO, A. S.; OLIVEIRA, D. F.; LOPES, R. T. An analytical computed microtomography methodology for identification of microplastic fragments in aqueous media. X-ray Spectrometry, v. 1, p. 1 – 7, 2023.

[18] TÖTZKE, C.; KOZHUHAROVA, B.; KARDJILOV, N.; LENOIR, N.; MANKE, I.; OSWALD, S. E. Non-invasive 3D analysis of microplastic particle in sandy soil – Exploring feasible options and capabilities. Science of the Total Environment, v. 907, 167927, p. 1 – 12, 2024.

[19] TELES, A. P.; ALMEIDA, A. P. F.; Machado, A. S.; OLIVEIRA, D. F.; LOPES, R. T. Characterization of microplastic particles in sandy soil using x-ray microtomography. Radiation Physics and Chemistry, v. 223, 111900, p. 1 – 4, 2024.

[20] ANGELIDAKIS, V.; NADIMI, S.; UTILI, S. Shape Analyser for Particle Engineering (SHAPE): Seamless characterization and simplification of particle morphology from imaging data. Computer Physics Communications, v. 265, 107983, p. 1 – 9, 2021.

[21] BLOTT, S. J.; PYE, K. Particle shape: a review and new methods of characterization and classification. Sedimentology, v. 55, p. 31 – 63, 2008.

[22] NIST. National Institute of Standards and Technology. Disponível em: https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Acesso em: 05 mar. 2024.

[23] AY, M. R.; MEHRANIAN, A.; MALEKI, A.; GHADIRI, H.; GHAFARIAN, P.; ZAIDI, H. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice x-ray CT scanners. Physica Medica, v. 29, p. 249 – 260, 2023.

[24] WAGNER, J.; MACHER, J. Automated Spore Measurements Using Microscopy, Image Analysis, and Peak Recognition of Near-Monodisperse Aerosols. Aerosol Science and Technology, v. 46, p. 862 – 873, 2012.

[25] BOUXSEIN, M. L.; BOYD, S. K., CHRISTIANSEN, B. A.; GULDBERG, R. E.; JEPSEN, K. J.; MÜLLER, R. Guidelines for Assessment of Bone Microstructure in Rodents Using Micro-Computed Tomography. Journal of Bone and Mineral Research, v. 25, p. 1468 – 1486, 2010.

[26] MYS, K.; VARGA, P.; STOCKMANS, F.; GUEORGUIEV, B.; WYERS, C. E.; VAN DEN BERGH, J. P. W.; VAN LENTHE, G. H. Quantification of 3D microstructural parameters of trabecular bone is affected by the analysis software. Bone, v. 142, 115653, p. 1 – 7.

[27] DRAŽIĆ, S.; SLADOJE, N.; LINDBLAD, J. Estimation of Feret’s diameter from pixel coverage representation of a shape. Pattern Recognition Letters, v. 80, p. 37 – 45, 2016.

[28] WANDELL, H. Volume, Shape and Roundness of Quartz Particles. The journal of Geology, v. 43, p. 250-280, 1935.

[29] LUSHER, A. L.; BRÅTE, L. N.; MUNNO, K.; HURLEY, R. R.; WELDEN, N. A. Is It or Isn’t; The Importance of Visual Classification in Microplastic Characterization. Applied Spectroscopy, v. 74, p. 1139 – 1153, 2020.

[30] SEMENSATTO, D.; LABUTO, G.; GEROLIN, C. R. The importance of integrating morphological attributes of microplastics: a theoretical discussion to assess environmental impacts. Sustainable Waste Management & Circular Economy, v. 31, p. 17527 – 17532, 2022.

[31] JUSTICE, I.; DERBY, B.; DAVIS, G.; ANDERSON, P.; ELLIOTT, J. Characterisation of void and reinforcement distributions in a metal matrix composite by X-ray edge-contrast microtomography. Scripta Materialia, v. 48, p. 1259 – 1264, 2003.

[32] CNUDE, V.; BOONE, M. N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, v. 123, p. 1 – 17. 2013.

[33] KATO, M.; TAKAHASHI, M.; KAWASAKI, S.; KANEKO, K. Segmentation of multi-phase X-ray computed tomography images. Environmental Geotechnics, v. 2, p. 104 – 117, 2015.

[34] TELES, A. P.; LIMA, I.; LOPES, R. T. Rock porosity quantification by dual-energy X-ray computed microtomography. Micron, v. 83, p. 72 – 78, 2016.

[35] LI, G.; SHI, R.; FAN, Q.; XIA, Y.; ZHANG, H. Reconstruction and quantitative characterization of the three dimensional microstructure model of TC6 titanium alloy based on dual-energy X-ray microtomography. Materials Science & Engineering A, v. 675, p. 212 – 220. 2016.

[36] TOURINHO, P. S.; KOČÍ, V.; LOUREIRO, S.; VAN GESTEL, C. A. M. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environmental Pollution, v. 252, p. 1246 – 1256, 2019.

[37] CAMPANALE, C.; MASSARELLI, C.; SAVINO, I.; LOCAPUTO, V.; URICCHIO, V. F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. International Journal of Environmental Research and Public Health, v. 17, 1 – 26.

[38] VINEGAR, H. J.; WELLINGTON, S. L. Tomographic imaging of three-phase flow experiments. Review of Scientific Instruments, v. 58, p. 96 – 107, 1987.

Publicado

06-01-2025

Como Citar

High resolution X-ray microtomography as a tool for observation and classification of individual microplastics. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2631, 2025. DOI: 10.15392/2319-0612.2024.2631. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2631. Acesso em: 17 jul. 2025.