Desenvolvimento De Um Simulador Antropomórfico De Olho Por Impressão 3D

Autores

DOI:

https://doi.org/10.15392/2319-0612.2024.2637

Palavras-chave:

Anthropomorphic phantom, dosimetry, eye, 3D printing, radiotherapy

Resumo

O objetivo deste trabalho foi a construção de um simulador antropomórfico tecido-equivalente por impressão 3D para permitir dosimetria com filmes radiocrômicos do aparelho óptico em radioterapia com feixes externos. Foram desenvolvidas fatias baseadas no simulador de referência ATOM® e que devem ser com ele utilizadas. A impressão 3D em ácido polilático (PLA) foi utilizada para representação dos tecidos moles, enquanto uma mistura de gesso, sal e água foi usada para os tecidos ósseos do crânio. A validação do simulador foi realizada por avaliações de unidades de Hounsfield (HU) para verificação de homogeneidade e compatibilidade com o simulador ATOM.  A homogeneidade foi atestada ao apresentar 28.1% de variação na peça em PLA e 6.6% na mistura de gesso. Os resultados também demonstraram compatibilidade com os materiais do simulador ATOM®. O simulador foi devidamente construído e validado, podendo ser testados como sistemas dosimétricos para a avaliação das doses na região ocular nos procedimentos radioterapêuticos.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] CHENG, C. Y.; HSU, Wen-Ming. Incidence of eye cancer in Taiwan: an 18-year review. Eye, v. 18, n. 2, p. 152-158, 2004. DOI: https://doi.org/10.1038/sj.eye.6700619

[2] KALIKI, S.; SHIELDS, C. L. Uveal melanoma: relatively rare but deadly cancer. Eye, v. 31, n. 2, p. 241-257, 2017. DOI: https://doi.org/10.1038/eye.2016.275

[3] AHMAD, S. M.; ESMAELI, B. Metastatic tumors of the orbit and ocular adnexa. Current opinion in ophthalmology, v. 18, n. 5, p. 405-413, 2007. DOI: https://doi.org/10.1097/ICU.0b013e3282c5077c

[4] SHIELDS, J. A.; SHIELDS, C. L.; SCARTOZZI, R. Survey of 1264 patients with orbital tumors and simulating lesions: The 2002 Montgomery Lecture, part 1. Ophthalmology, v. 111, n. 5, p. 997-1008, 2004. DOI: https://doi.org/10.1016/j.ophtha.2003.01.002

[5] LUCENA, E. et al. Epidemiology of uveal melanoma in Brazil. International Journal of Retina and Vitreous, v. 6, p. 1-8, 2020. DOI: https://doi.org/10.1186/s40942-020-00261-w

[6] RIBEIRO, K. C. B.; ANTONELI, C. B. G. Trends in eye cancer mortality among children in Brazil, 1980–2002. Pediatric blood & cancer, v. 48, n. 3, p. 296-305, 2007. DOI: https://doi.org/10.1002/pbc.20826

[7] THOMSON, R. M. et al. AAPM recommendations on medical physics practices for ocular plaque brachytherapy: report of task group 221. Medical Physics, v. 47, n. 5, p. e92-e124, 2020. DOI: https://doi.org/10.1002/mp.13996

[8] CHIU‐TSAO, S. et al. Dosimetry of 125I and 103Pd COMS eye plaques for intraocular tumors: Report of Task Group 129 by the AAPM and ABS. Medical physics, v. 39, n. 10, p. 6161-6184, 2012. DOI: https://doi.org/10.1118/1.4749933

[9] STANNARD, C. et al. Radiotherapy for ocular tumours. Eye, v. 27, n. 2, p. 119-127, 2013. DOI: https://doi.org/10.1038/eye.2012.241

[10] MUNIER, F. L. et al. New developments in external beam radiotherapy for retinoblastoma: from lens to normal tissue‐sparing techniques. Clinical & experimental ophthalmology, v. 36, n. 1, p. 78-89, 2008. DOI: https://doi.org/10.1111/j.1442-9071.2007.01602.x

[11] JEGANATHAN, V. S. E.; WIRTH, A.; MACMANUS, M. P. Ocular risks from orbital and periorbital radiation therapy: a critical review. International Journal of Radiation Oncology* Biology* Physics, v. 79, n. 3, p. 650-659, 2011. DOI: https://doi.org/10.1016/j.ijrobp.2010.09.056

[12] DURKIN, S. R. et al. Ophthalmic and adnexal complications of radiotherapy. Acta ophthalmologica Scandinavica, v. 85, n. 3, p. 240-250, 2007. DOI: https://doi.org/10.1111/j.1600-0420.2006.00822.x

[13] SCOCCIANTI, S. et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiotherapy and Oncology, v. 114, n. 2, p. 230-238, 2015. DOI: https://doi.org/10.1016/j.radonc.2015.01.016

[14] ABOUAF, L. et al. Standard-fractionated radiotherapy for optic nerve sheath meningioma: visual outcome is predicted by mean eye dose. International Journal of Radiation Oncology* Biology* Physics, v. 82, n. 3, p. 1268-1277, 2012. DOI: https://doi.org/10.1016/j.ijrobp.2011.04.010

[15] BUTSON, M. J. et al. Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic film. Physica Medica, v. 24, n. 1, p. 29-33, 2008. DOI: https://doi.org/10.1016/j.ejmp.2007.11.001

[16] CARINOU, E. et al. Eye lens monitoring for interventional radiology personnel: dosimeters, calibration and practical aspects of Hp (3) monitoring. A 2015 review. Journal of Radiological Protection, v. 35, n. 3, p. R17, 2015. DOI: https://doi.org/10.1088/0952-4746/35/3/R17

[17] STOLARCZYK, L. et al. Assessment of undesirable dose to eye-melanoma patients after proton radiotherapy. Radiation measurements, v. 45, n. 10, p. 1441-1444, 2010. DOI: https://doi.org/10.1016/j.radmeas.2010.05.029

[18] HASANZADEH, H.; ABEDELAHI, A. Introducing a simple tissue equivalent anthropomorphic phantom for radiation dosimetry in diagnostic radiology and radiotherapy. Journal of Paramedical Sciences, v. 2, n. 4, p. 25-29, 2011.

[19] MCGARRY, C. K. et al. Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology, v. 65, n. 23, p. 23TR01, 2020. DOI: https://doi.org/10.1088/1361-6560/abbd17

[20] DEWERD, L. A.; KISSICK M. The phantoms of medical and health physics. Berlin: Springer, 2014. DOI: https://doi.org/10.1007/978-1-4614-8304-5

[21] WINSLOW, J. F. et al. Construction of anthropomorphic phantoms for use in dosimetry studies. Journal of Applied Clinical Medical Physics, v. 10, n. 3, p. 195-204, 2009. DOI: https://doi.org/10.1120/jacmp.v10i3.2986

[22] MCGARRY, Conor K. et al. Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology, v. 65, n. 23, p. 23TR01, 2020. DOI: https://doi.org/10.1088/1361-6560/abbd17

[23] ICRU. Report 44: Tissue Substitutes in Radiation Dosimetry and Measurement. Journal of International Commission on Radiation Units and Measurements, v. 23, 1989. DOI: https://doi.org/10.1093/jicru_os23.1.184

[24] MADAMESILA, J. et al. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy. Physica Medica, v. 32, n. 1, p. 242-247, 2016. DOI: https://doi.org/10.1016/j.ejmp.2015.09.013

[25] KAMOMAE, T. et al. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Physica Medica, v. 44, p. 205-211, 2017. DOI: https://doi.org/10.1016/j.ejmp.2017.10.005

[26] PEREIRA, D. D. et al. Validation of polylactic acid polymer as soft tissue substitutive in radiotherapy. Radiation Physics and Chemistry, v. 189, p. 109726, 2021. DOI: https://doi.org/10.1016/j.radphyschem.2021.109726

[27] PEREIRA, D. D. et al. Development of an anthropomorphic phantom based on 3D printing for assessment of dose delivered to the eye and adjacent tissues. Radiation Physics and Chemistry, v. 199, p. 110292, 2022. DOI: https://doi.org/10.1016/j.radphyschem.2022.110292

[28] PEREIRA, D. D. Desenvolvimento de um simulador antropomórfico baseado em impressão 3D para dosimetria em radioterapia de olho. Dissertação (mestrado) - Instituto de Radioproteção e Dosimetria, Rio de Janeiro, 2021.

[29] Prusa Research. Original Prusa i3 MK3S. 2019. Disponível em: https://www.prusa3d.com/category/original-prusa-i3-mk3s/. Acesso em: 10 de Junho de 2024.

Publicado

08-01-2025