Computational Fluid Dynamics study of element type and turbulence model impact on a flow over a spacer grid using Simcenter STAR-CCM+

Autores

  • Tiago Augusto Santiago Vieira Siemens Digital Industries
  • Yasmim Martins Carvalho Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Higor Fabiano Pereira de Castro Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Keferson Almeida Carvalho Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Rebeca Cabral Gonçalves Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Pedro Henrique Araújo Siemens Digital Industries
  • Davi Cury Siemens Digital Industries
  • Vitor Vasconcelos Araújo Silva Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Graiciany Paula Barros Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml
  • Andre Augusto Campagnole dos Santos Centro de Desenvolvimento da Tecnologia Nuclear image/svg+xml

DOI:

https://doi.org/10.15392/2319-0612.2024.2658

Palavras-chave:

CFD, Grades espaçadoras, Análise de malhas

Resumo

Resumo: Neste estudo, foi realizada uma investigação numérica sobre o efeito de diferentes tipos de elementos de malha nos resultados do escoamento de água através de uma grade espaçadora representativa, utilizando CFD (Computational Fluid Dynamics). Além disso, foram avaliadas as variações do modelo de turbulência k−ϵ disponíveis no Simcenter STAR-CCM+, utilizando diferentes tipos de malhas desenvolvidas. Foram utilizados três tipos de elementos dominantes (cartesiano, poliédrico e tetraédrico) e três modelos k−ϵ (Standard Two-layer – STL, Realizable Two-layer – RTL e Elliptic Blending – EB). Para a análise de desempenho, foi utilizada uma grade espaçadora do tipo aletada de um PWR em um arranjo 2x2. Os resultados demonstraram concordância com os dados experimentais disponíveis na literatura. No entanto, as malhas cartesiana e tetraédrica amorteceram os perfis de velocidade após a grade espaçadora. A malha poliédrica com os modelos k−ϵ RTL e EB apresentou resultados mais próximos aos experimentais. Em relação ao Secondary Flow (SF), os resultados mostraram consistência com a tendência de redução da intensidade a jusante da grade espaçadora. Os modelos poliédricos EB e RTL exibiram um comportamento aproximado aos resultados experimentais.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] Siemens Digital Industries Software. Simcenter STAR-CCM+ User Manual. Disponível em: https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/. Acesso em: 2024.

[2] SANTOS, A. A. C. Investigação numérica e experimental do escoamento de água em feixe de varetas representativo de elementos combustíveis nucleares de reatores do tipo PWR. PhD Dissertation. Universidade Federal de Minas Gerais, Belo Horizonte, 2012.

[3] NAVARRO, M. A.; SANTOS, A. A. Evaluation of a numeric procedure for flow simulation of a 5x5 PWR rod bundle with a mixing vane spacer. Progress in Nuclear Energy, v. 53, p. 1190-1196, 2011.

[4] IKEDA, K. CFD application to advanced design for high efficiency spacer grid. Nuclear Engineering and Design, v. 279, p. 73-82, 2014.

[5] PODILA, K.; RAO, Y.; KRAUSE, M.; BAILEY, J. A CFD simulation of 5x5 rod bundles with split-type spacers. Progress in Nuclear Energy, v. 70, p. 167-175, 2014.

[6] CHEN, X.; DU, S.; ZHANG, Y.; YU, H.; LI, S.; PENG, H.; WANG, W.; ZENG, W. Validation of CFD analysis for rod bundle flow test with vaned spacer grids. Annals of Nuclear Energy, v. 109, p. 370-379, 2017.

[7] WANG, M.; JU, H.; WU, J.; QIU, H.; LIU, K.; TIAN, W.; SU, G. A review of CFD studies on thermal hydraulic analysis of coolant flow through fuel rod bundles in nuclear reactor. Progress in Nuclear Energy, v. 171, 2024.

[8] NAVARRO, M. A.; SANTOS, A. A. Numerical evaluation of flow through a 5x5 PWR rod bundle: effect of the vane arrangement in a spacer grid. In: PROCEEDINGS OF THE INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE (INAC), 2009, Rio de Janeiro, Rio de Janeiro, Brazil. Numerical evaluation of flow through a 5x5 PWR rod bundle: effect of the vane arrangement in a spacer grid. Rio de Janeiro, Rio de Janeiro, Brazil: INAC, 2009.

[9] SANTOS, A. A.; BARROS FILHO, J. A.; NAVARRO, M. A. Verification and validation of a numeric procedure for flow simulation of a 2x2 PWR rod bundle. In: PROCEEDINGS OF THE INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE (INAC), 2011, Belo Horizonte, Minas Gerais, Brazil. Verification and validation of a numeric procedure for flow simulation of a 2x2 PWR rod bundle. Belo Horizonte, Minas Gerais, Brazil: INAC, 2011.

[10] WANG, W.; CAO, Y.; OKAZE, T. Comparison of hexahedral, tetrahedral and polyhedral cells for reproducing the wind field around an isolated building by LES. Building and Environment, v. 195, 2021.

[11] HEFNY, M. M.; OOKA, R. CFD analysis of pollutant dispersion around buildings: Effect of cell geometry. Building and Environment, v. 44, p. 1699-1706, 2009.

[12] CINOSI, N.; WALKER, S.; BLUCK, M.; ISSA, R. CFD Simulation of turbulent flow in a rod bundle with spacer grids (matis-h) using STAR-CCM+. Nuclear Engineering and Design, v. 279, p. 37-49, 2014.

[13] XIONG, J.; LU, C.; QU, W. Validation for CFD simulation in rod bundles with split-vane spacer grids based on LDA measurement. Frontiers in Energy Research, v. 8, p. 43, 2020.

[14] JONES, W. P.; LAUNDER, B. E. The prediction of laminarization with a two-equation model of turbulence. International journal of heat and mass transfer, v. 15, p. 301-314, 1972.

[15] RODI, W. Experience with two-layer models combining the k-epsilon model with a one-equation model near the wall. In: 29th Aerospace sciences meeting, January 1991, Reno, NV, USA. INAC. Reno, NV, USA: AIAA, 1991.

[16] SHIH, T.-H.; LIOU, W. W.; SHABBIR, A.; YANG, Z.; ZHU, J. A new k-eddy viscosity model for high Reynolds number turbulent flows. Computer & fluids, v. 24, p. 227-238, 1995.

[17] DURBIN, P. A reynolds stress model for near-wall turbulence. Journal of Fluid Mechanics, v. 249, p. 465-498, 1993.

[18] MANCEAU, R.; HANJALI’C, K. Elliptic blending model: A new near-wall reynolds-stress turbulence closure. Physics of Fluids, v. 14, p. 744-754, 2002.

[19] BILLARD, F.; LAURENCE, D. A robust k- ε- v2/k elliptic blending turbulence model applied to near-wall, separated and buoyant flows. International Journal of Heat and Fluid Flow, v. 33, p. 45-58, 2012.

[20] CHEN, QINGYAN. "Comparison of different k-ε models for indoor air flow computations." Numerical Heat Transfer, Part B Fundamentals, v. 28, p. 353-369, 1995.

[21] XIONG, M., CHEN, B., ZHANG, H. and QIAN, Y. Study on accuracy of cfd simulations of wind environment around high-rise buildings: a comparative study of k-ε turbulence models based on polyhedral meshes and wind tunnel experiments, Applied Sciences, v. 12, p. 7105, 2022.

[22] KAROUTAS, Z.; GU, C.-Y.; SCHÖLIN, B. 3-D flow analyses for design of nuclear fuel spacer. In: PROCEEDINGS OF THE US NUCLEAR REGULATORY COMMISSION (NRC), 10-15 September 1995, Saratoga Springs, NY, USA. 3-D flow analyses for design of nuclear fuel spacer. Saratoga Springs, NY, USA: US Nuclear Regulatory Commission, 1995.

[23] CHUN, T.-H.; OH, D.-S. A pressure drop model for spacer grids with and without flow mixing vanes. Journal of Nuclear Science and Technology, v. 35, p. 508-510, 1998.

[24] IN, W. K.; OH, D. S.; CHUN, T. H. Empirical and computational pressure drop correlations for pressurized water reactor fuel spacer grids. Nuclear techonology, v. 139, p. 72-79, 2002.

Downloads

Publicado

28-05-2025

Como Citar

Computational Fluid Dynamics study of element type and turbulence model impact on a flow over a spacer grid using Simcenter STAR-CCM+. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. e2658, 2025. DOI: 10.15392/2319-0612.2024.2658. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2658. Acesso em: 17 jul. 2025.