Explorando a eficiência da proteção contra radiação de pastas de cimento Portland de menor impacto ambiental elaboradas com sulfato de bário, sílica ativa e cinza volante
DOI:
https://doi.org/10.15392/2319-0612.2025.2777Palavras-chave:
Pastas cimentícias, Sulfato de bário, Barreiras de proteção, Radiação ionizante, RadioterapiaResumo
O escopo deste trabalho está no desenvolvimento de novos compósitos de baixo impacto ambiental para atuarem na blindagem radiológica em ambientes hospitalares. Para tanto, foram investigadas as propriedades de radioproteção de pastas cimentícias contendo 20% de BaSO4, além de 10% de cinza volante e sílica ativa como MCS. As amostras foram caracterizadas através da consistência, densidade aparente e resistência mecânica aos 7 e 28 dias de idade. Além disso, foram realizadas medidas de transmissão para diferentes espessuras de amostras utilizando um feixe de fótons de um acelerador linear operando a 6 e 10 MV em uma sala de radioterapia. As pastas de bário apresentaram redução na espessura da amostra de aproximadamente 10% em relação a pasta referência (sem bário) na maior voltagem analisada para atenuar 90% da radiação incidente (conforme legislação vigente). Dentre os MCS, a sílica ativa se destacou como o substituto mais adequado quando combinada ao bário nas matrizes de cimento Portland. Por fim, a densidade aparente das amostras parece ser decisiva para no desempenho de novos materiais frente a blindagem radiológica.
Downloads
Referências
[1] Chandra R A, Keane F K, Voncken F E, Thomas C R. Contemporary radiotherapy: present and future. The Lancet, v.398, n. 10295, p.171-184, 2021. https://doi.org/10.1016/S01406736(21)00233-6.
[2] Guan H, Zhou Z, Hou X, Zhang F, Zhao J, Hu K. Safety and potential increased risk of toxicity of radiotherapy combined immunotherapy strategy. Asia‐Pacific Journal of Clinical Oncology, v. 19, n. 1, p. 35-50, 2023. https://doi.org/10.1111/ajco.13688.
[3] Barton M B, Jacob S, Shafiq J, Wong K, Thompson S R, Hanna T P, et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiotherapy and oncology, v. 112, n. 1, p. 140-144, 2014. https://doi.org/10.1016/j.radonc.2014.03.024.
[4] Chandra R A, Kachnic L A, Thomas JR C R. Contemporary topics in radiation medicine, part I: current issues and techniques. Elsevier Health Sciences, v. 33, n. 6, 2019. https://doi.org/10.1016/S0889-8588(19)30132-7.
[5] Chandra R A, Kachnic L A, Thomas JR C R. Contemporary topics in radiation medicine, part II: disease sites. Hematol Oncol Clinics, v. 34, n. 10.1016, p. S0889-8588, 2020. https://doi.org/10.1016/S0889-8588(19)30145-5.
[6] De Ruysscher D, Niedermann G, Burnet N G, Siva S, Lee A W, et al. Radiotherapy toxicity. Nature Reviews Disease Primers, v. 5, n. 1, p. 13, 2019. https://doi.org/10.1038/s41572-019-0064-5.
[7] Campbell G S, Norman J. An introduction to environmental biophysics. Berlin: Springer Science & Business Media; 2012. https://doi.org/10.1007/978-1-4612-1626-1.
[8] Scaff L A M. Física na radioterapia: a base analógica de uma era digital. São Paulo: Projeto Saber; 2000. ISBN-10: 8598626112.
[9] Nouailhetas Y. Apostila Educativa: Radiações ionizantes e a vida. Rio de Janeiro: Comissão Nacional de Engenharia Nuclear; 2012. Available at: https://www.gov.br/cnen/pt-br/material-divulgacao-videos-imagens-publicacoes/publicacoes-1/radiacoesionizantes.pdf. Accessed on: 27 Jul. 2023.
[10] Gbetchedji A A, Mansouri I, Hounsossou H C, Houndetoungan G D, Gbaguidi B A, Haddy N, et al. Experimental Assessment of Workplace Radiation Exposure in Diagnostic X-ray Medical Imaging Centres in Benin from 2019 to 2020. Annals of Work Exposures and Health, v. 65, n. 8, p. 988-997, 2021. https://doi.org/10.1093/annweh/wxab046.
[11] Huhn A, Vargas M, Melo J, Gelbcke F L, Ferreira M L, Lança L. Implementation of a radiation protection program: opinion of the health team working in a radiology service. Texto & Contexto-Enfermagem, v. 26, p. e5370015, 2017. https://doi.org/10.1590/0104-07072017005370015.
[12] Cuttler J M. Application of low doses of ionizing radiation in medical therapies. Dose-response, v. 18, n. 1, p. 1559325819895739, 2020. https://doi.org/10.1177/1559325819895739.
[13] Thellier S, Poret C, Carminati S. Radiotherapy risk management: Going beyond the concept of safety barriers. Radioprotection, v. 56, n. 3, p. 211-219, 2021. https://doi.org/10.1051/radiopro/2021021.
[14] Agrawal V, Paulose R, Arya R, Rajak G, Giri A, Bijanu A, et al. Green conversion of hazardous red mud into diagnostic X-ray shielding tiles Journal of Hazardous Materials, v. 424, p. 127507, 2022. https://doi.org/10.1016/j.jhazmat.2021.127507.
[15] Sarker D, Biswas A, Rahman M, Mehedi M. Optimization of radiation shielding concrete for radiotherapy treatment room at Bangabandhu sheikh mujib medical university. Key Engineering Materials, v. 705, p. 338-344, 2016. https://doi.org/10.4028/www.scientific.net/KEM.705.338.
[16] Amritphale S S, Anshul A, Chandra N, Ramakrishnan N. A novel process for making radiopaque materials using bauxite-Red mud. Journal of the European Ceramic Society, v. 27, n. 4, p. 1945-1951, 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.05.106.
[17] Chauhan R K, Mudgal M, Verma S, Amritphale S S, Das S, Shrivastva A. Development and design mix of radiation shielding concrete for gamma-ray shielding. Journal of Inorganic and Organometallic Polymers and Materials, v. 27, p. 871-882, 2017. https://doi.org/10.1007/s10904-017-0531-y.
[18] Zayed A M, Masoud M A, Rashad A M, El-Khayatt A M, Sakr K, Kansouh W A, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete. Construction and Building Materials, v. 260, p. 120473, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120473.
[19] Arfa M M, Sadawy M M, Nooman M T, Farag A T M, El Shazly R M. The influence of heating on mechanical and nuclear properties of reactive powder concrete as a protective shield in nuclear facilities. Progress in Nuclear Energy, v. 143, p. 104046, 2022. https://doi.org/10.1016/j.pnucene.2021.104046.
[20] Sadeq M S, Bashter I I, Salem S M, Mansour S F, Saudi H A, Sayyed M I, et al. Enhancing the gamma-ray attenuation parameters of mixed bismuth/barium borosilicate glasses: using an experimental method, Geant4 code and XCOM software. Progress in Nuclear Energy, v. 145, p. 104124, 2022. https://doi.org/10.1016/j.pnucene.2022.104124.
[21] AbuAlRoos N J, Amin N A B, Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry, v. 165, p. 108439, 2019.https://doi.org/10.1016/j.radphyschem.2019.108439.
[22] Alorfi H S, Hussein M A, Tijani S A. The use of rocks in lieu of bricks and concrete as radiation shielding barriers at low gamma and nuclear medicine energies. Construction and Building Materials, v. 251, p. 118908, 2020. https://doi.org/10.1016/j.conbuildmat.2020.118908.
[23] Sharma A, Sayyed M I, Agar O, Kaçal M R, Polat H, Akman F. Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Materials Chemistry and Physics, v. 241, p. 122330, 2020. https://doi.org/10.1016/j.matchemphys.2019.122330.
[24] Li Z, Zhou W, Zhang X, Gao Y, Guo S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Scientific reports, v. 11, n. 1, p. 4384, 2021. https://doi.org/10.1038/s41598-021-83031-4.
[25] Ahmed R, Saad Hassan G, Scott T, Bakr M. Assessment of Five Concrete Types as Candidate Shielding Materials for a Compact Radiation Source Based on the IECF. Materials, v. 16, n. 7, p. 2845, 2023. https://doi.org/10.3390/ma16072845.
[26] Turhan M F, Akman F, Kaçal M R, Polat H, Demirkol İ. A study for gamma-ray attenuation performances of barite filled polymer composites. Applied Radiation and Isotopes, v. 191, p. 110568, 2023. https://doi.org/10.1016/j.apradiso.2022.110568.
[27] El-Samrah M G, Abdel-Rahman M A, El Shazly R M. Effect of heating on physical, mechanical, and nuclear radiation shielding properties of modified concrete mixes. Radiation Physics and Chemistry, v. 153, p. 104-110, 2018. https://doi.org/10.1016/j.radphyschem.2018.09.018.
[28] Pires M M, Nascimento C D, Souza E G, Kruger K, Hoff G. Utilização de sulfato de bário como constituinte de concreto para blindagem de salas de radiologia. Matéria (Rio de Janeiro), v. 26, n. 04, p. e13103, 2021. https://doi.org/10.1590/S1517-707620210004.1303.
[29] Pires M M, Nascimento C D, Souza E G, Hoff G, Kulakowski M P. Estudo de blindagem para salas de radioterapia: uma aplicação para concretos baritados. Matéria (Rio de Janeiro), v. 27, p. e202248962, 2022. https://doi.org/10.1590/1517-7076-RMAT-2022-48962.
[30] Yin S, Wang H, Li A, Ma Z, He Y. Study on Radiation Shielding Properties of New Barium-Doped Zinc Tellurite Glass. Materials, v. 15, n. 6, p. 2117, 2022. https://doi.org/10.3390/ma15062117.
[31] Amin M N, Ahmad I, Iqbal M, Abbas A, Khan K, Faraz M I, et al. Computational AI models for investigating the radiation shielding potential of high-density concrete. Materials, v. 15, n. 13, p. 4573, 2022. https://doi.org/10.3390/ma15134573.
[32] Tochaikul G, Mongkolsuk M, Kobutree P, Kawvised S, Pairodsantikul P, Wongsa P, et al. Properties of cement Portland composite prepared with Barium sulfate and Bismuth oxide for radiation shielding. Radiation Effects and Defects in Solids, v. 179, n. 3-4, p. 548-566, 2024. https://doi.org/10.1080/10420150.2023.2294037.
[33] Zezulová A, Staněk T, Opravil T. The influence of barium sulphate and barium carbonate on the Portland cement. Procedia Engineering, v. 151, p. 42-49, 2016. https://doi.org/10.1016/j.proeng.2016.07.358.
[34] Skibsted J, Snellings R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, v. 124, p. 105799, 2019. https://doi.org/10.1016/j.cemconres.2019.105799.
[35] Snellings R, Suraneni P, Skibsted J. Future and emerging supplementary cementitious materials. Cement and concrete research, v. 171, p. 107199, 2023. https://doi.org/10.1016/j.cemconres.2023.107199.
[36] Kharita M H, Takeyeddin M, Alnassar M, Yousef S. Development of special radiation shielding concretes using natural local materials and evaluation of their shielding characteristics. Progress in Nuclear energy, v. 50, n. 1, p. 33-36, 2008. https://doi.org/10.1016/j.pnucene.2007.10.004.
[37] Madej D, Silarski M, Parzych S. Design, structure, microstructure and gamma radiation shielding properties of refractory concrete materials containing Ba-and Sr-doped cements. Materials Chemistry and Physics, v. 260, p. 124095, 2021. https://doi.org/10.1016/j.matchemphys.2020.124095.
[38] Badarloo B, Lehner P, Bakhtiari Doost R. Mechanical properties and gamma radiation transmission rate of heavyweight concrete containing barite aggregates. Materials, v. 15, n. 6, p. 2173, 2022. https://doi.org/10.3390/ma15062173.
[39] El-Samrah M G, Zamora M A, Novog D R, Chidiac S E. Radiation shielding properties of modified concrete mixes and their suitability in dry storage cask. Progress in Nuclear Energy, v. 148, p. 104195, 2022. https://doi.org/10.1016/j.pnucene.2022.104195.
[40] Al-Ghamdi H, Elsafi M, Sayyed M I, Almuqrin A H, Tamayo P. Performance of newly developed concretes incorporating WO3 and barite as radiation shielding material. Journal of Materials Research and Technology, v. 19, p. 4103-4114, 2022. https://doi.org/10.1016/j.jmrt.2022.06.145.
[41] Nabil I M, El-Samrah M G, Omar A, Tawfic A F, El Sayed A F. Experimental, analytical, and simulation studies of modified concrete mix for radiation shielding in a mixed radiation field. Scientific Reports, v. 13, n. 1, p. 17637, 2023. https://doi.org/10.1038/s41598-023-44978-8.
[42] Abualroos N J, Yaacob K A, Zainon R. Radiation attenuation effectiveness of polymer-based radiation shielding materials for gamma radiation. Radiation Physics and Chemistry, v. 212, p. 111070, 2023. https://doi.org/10.1016/j.radphyschem.2023.111070.
[43] Pires M M, Sobreira L C, Maia I Z, Ribeiro F R C, Rodrigues N M, Souza E G, et al. Building construction materials for ionizing radiation shielding: a systematic literature review. Caderno Pedagógico, v. 21, n. 1, p. 3129-3162, 2024. https://doi.org/10.54033/cadpedv21n1-168.
[44] Berodier E, Scrivener K. Understanding the Filler Effect on the Nucleation and Growth of C‐S‐H. Journal of the American Ceramic Society, v. 97, n. 12, p. 3764-3773, 2014. https://doi.org/10.1111/jace.13177.
[45] Scrivener K, Snellings R, Lothenbach B. A practical guide to microstructural analysis of cementitious materials. Boca Raton: Taylor & Francis Group; 2016. ISBN-13: 978-1-4987-3867-5.
[46] Mantellato S, Palacios M, Flatt R J. Impact of sample preparation on the specific surface area of synthetic ettringite. Cement and Concrete Research, v. 86, p. 20-28, 2016. https://doi.org/10.1016/j.cemconres.2016.04.005.
[47] Brazilian Association of Technical Standards. ABNT NBR 5738:2015: Concrete - Procedure for molding and curing concrete test specimens. Rio de Janeiro: ABNT; 2015.
[48] Kantro D L. Influence of water-reducing admixtures on properties of cement paste - a miniature slump test. Cement, Concrete, and Aggregates, v. 2, n. 2, p. 95-102, 1980. https://doi.org/10.1520/CCA10190J.
[49] Brazilian Association of Technical Standards. ABNT NBR 7215:2019: Portland cement - Determination of compressive strength of cylindrical test specimens. Rio de Janeiro: ABNT; 2019.
[50] Mehdipour I, Khayat K H. Elucidating how particle packing controls rheology and strength development of dense cementitious suspensions. Cement and Concrete Composites, v. 104, p. 103413, 2019. https://doi.org/10.1016/j.cemconcomp.2019.103413.
[51] Campos H F, Rocha T M S, Reus G C, Klein N S, Marques Filho J. Determinação do teor ótimo de substituição do cimento Portland por pó de pedra usando métodos de empacotamento de partículas e análise do excesso de água na consistência de pastas. Revista IBRACON de Estruturas e Materiais, v. 12, p. 210-232, 2019. https://doi.org/10.1590/S1983-41952019000200002.
[52] Zhang C, Wang A, Tang M, Liu, X. The filling role of pozzolanic material. Cement and concrete research, v. 26, n. 6, p. 943-947, 1996. https://doi.org/10.1016/0008-8846(96)00064-6.
[53] Wang A, Zhang C, Sun W. Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, v. 33, n. 12, p. 2023-2029, 2003. https://doi.org/10.1016/S0008-8846(03)00217-5.
[54] Mehdipour I, Khayat K H. Effect of Supplementary Cementitious Material Content and Binder Dispersion on Packing Density and Compressive Strength of Sustainable Cement Paste. ACI Materials Journal, v. 113, n. 3, 2016. https://doi.org/10.14359/51688704.
[55] Gökçe H S, Yalçınkaya Ç, Tuyan, M. Optimization of reactive powder concrete by means of barite aggregate for both neutrons and gamma rays. Construction and building materials, v. 189, p. 470-477, 2018. https://doi.org/10.1016/j.conbuildmat.2018.09.022.
[56] Mahmoud K A, Sayyed M I, Tashlykov O L. Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code. Radiation Physics and Chemistry, v. 165, p. 108426, 2019. https://doi.org/10.1016/j.radphyschem.2019.108426.
[57] Azreen N M, Rashid R S, Amran Y M, Voo Y L, Haniza M, Hairie M, et al. Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. Construction and Building Materials, v. 263, p. 120161, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120161.
[58] Demir I, Gümüş M, Gökçe, H. S. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures. Construction and Building Materials, v. 257, p. 119596, 2020. https://doi.org/10.1016/j.conbuildmat.2020.119596.
[59] Gharissah M S, Ardiansyah A, Pauziah S R, Muhammad N A, Rahmat R, Heryanto H, et al. Composites cement/BaSO4/Fe3O4/CuO for improving X-ray absorption characteristics and structural properties. Scientific Reports, v. 12, n. 1, p. 19169, 2022. https://doi.org/10.1038/s41598-022-23908-0.
[60] Souza E G, Kruger K, Nascimento C D, Aguzzoli C, Hoff G, Moraes A C B, et al. Development of Lead-Free Radiation Shielding Material Utilizing Barium Sulfate and Magnesium Oxide as Fillers in Addition Cure Liquid Silicone Rubber. Polymers, v. 15, n. 22, p. 4382, 2023. https://doi.org/10.3390/polym15224382.
[61] Khalaf M A, Ban C C, Ramli M. The constituents, properties and application of heavyweight concrete: A review. Construction and building materials, v. 215, p. 73-89, 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.146.
[62] Eltawil K A, Mahdy M G, Youssf O, Tahwia A M. Producing heavyweight high-performance concrete by using black sand as newly shielding construction material. Materials, v. 14, n. 18, p. 5353, 2021. https://doi.org/10.3390/ma14185353.
[63] Shalbi S M, Al-Jarrah A M, Jaafar M S, Ahmed N M. Photon Attenuation Coefficients of Fly-Ash Based Geopolymers Synthesized with Different Barite Proportions. European Journal of Applied Physics, v. 3, n. 4, p. 1-5, 2021. https://doi.org/10.24018/ejphysics.2021.3.4.84.
[64] Oglat A A, Shalbi S M. An alternative radiation shielding material based on barium-sulphate (BaSO4) - modified fly ash geopolymers. Gels, v. 8, n. 4, p. 227, 2022. https://doi.org/10.3390/gels8040227.
[65] Abdullah M A H, Rashid R S M, Amran M, Hejazii F, Azreen N M, Fediuk R, et al. Recent trends in advanced radiation shielding concrete for construction of facilities: materials and properties. Polymers, v. 14, n. 14, p. 2830, 2022. https://doi.org/10.3390/polym14142830.
[66] Horszczaruk E, Brzozowski P. Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature. Construction and Building Materials, v. 195, p. 574-582, 2019. https://doi.org/10.1016/j.conbuildmat.2018.09.113.
[67] Bouali E, Ayadi A, Kadri E H, Kaci A, Soualhi H, Kallel A. Rheological and mechanical properties of heavy density concrete including barite powder. Arabian Journal for Science and Engineering, v. 45, p. 3999-4011, 2020. https://doi.org/10.1007/s13369-019-04331-6.
[68] Sayyed M I, Elsafi M, Almuqrin A H, Cornish K, Elkhatib A M. Novel Shielding Mortars for Radiation Source Transportation and Storage. Sustainability, v. 14, n. 3, p. 1248, 2022. https://doi.org/10.3390/su14031248.
[69] Huang X, Xin C, Li J S, Wang P, Liao S, Poon C S, et al. Using hazardous barium slag as a novel admixture for alkali activated slag cement. Cement and Concrete Composites, v. 125, p. 104332, 2022. https://doi.org/10.1016/j.cemconcomp.2021.104332.
[70] Mansoori E, Morshedian J, Darounkola M R R. Elaboration of X-ray shielding of highly barite-loaded polyester concrete: structure, mechanical properties, and MCNP simulation. Construction and Building Materials, v. 370, p. 130650, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130650.
[71] Kök S, Türetken M S, Öksüzer N, Gökçe, H S. Effect of elevated temperature on radiation shielding properties of cement and geopolymer mortars including barite aggregate and colemanite powder. Materialia, v. 27, p. 101693, 2023. https://doi.org/10.1016/j.mtla.2023.101693.
[72] Gartner E, Maruyama I, Chen, J. A new model for the CSH phase formed during the hydration of Portland cements. Cement and Concrete Research, v. 97, p. 95-106, 2017. https://doi.org/10.1016/j.cemconres.2017.03.001.
[73] Mehta P K, Monteiro P J M. Concreto: Microestrutura, Propriedades e Materiais. São Paulo: Ibracon; 2014. ISBN: 978-85-98576-21-3.
[74] Akcay B, Tasdemir M. Autogenous shrinkage, pozzolanic activity and mechanical properties of metakaolin blended cementitious materials. KSCE Journal of Civil Engineering, v. 23, p. 4727-4734, 2019. https://doi.org/10.1007/s12205-019-2401-3.
[75] Liu Y, Lei S, Lin M, Xia Z, Pei Z, Li B. Influence of calcined coal-series kaolin fineness on properties of cement paste and mortar. Construction and Building Materials, v. 171, p. 558-565, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.117.
[76] Scrivener K, Juilland P, Monteiro P. Advances in understanding hydration of Portland cement. Cement and Concrete Research, v. 78, p. 38-56, 2015. https://doi.org/10.1016/j.cemconres.2015.05.025.
[77] L’Hôpital E, Lothenbach B, Le Saout G, Kulik D, Scrivener K. Incorporation of aluminium in calcium-silicate-hydrates. Cement and Concrete Research, v. 75, p. 91-103, 2015. https://doi.org/10.1016/j.cemconres.2015.04.007.
[78] Wang Y, Shui Z, Gao X, Huang Y, Yu R, Li X, Yang R. Utilizing coral waste and metakaolin to produce eco-friendly marine mortar: Hydration, mechanical properties and durability. Journal of Cleaner Production, v. 219, p. 763-774, 2019. https://doi.org/10.1016/j.jclepro.2019.02.147.
[79] Li D, Wei R, Li L, Guan X, Mi X. Pitting corrosion of reinforcing steel bars in chloride contaminated concrete. Construction and Building Materials, v. 199, p. 359-368, 2019. https://doi.org/10.1016/j.conbuildmat.2018.12.003.
[80] Zunino F, Martirena F, Scrivener K. Limestone Calcined Clay Cements (LC³). ACI Materials Journal, v. 118, n. 3, 2021. https://doi.org/10.14359/51730422.
[81] Fox M. Optical Properties of Solids (2º ed). Oxford: Oxford University Press; 2010. ISBN-10: 0199573360.
[82] National Nuclear Energy Commission. CNEN NN 6.10: Safety and radiological protection requirements for radiotherapy services. Rio de Janeiro: CNEN; 2017.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2025 Maikon Moreira Pires, Everton Souza, Chiara das Dores do Nascimento, Larissa Sobreira, Isadora Zucchi Maia, Henrique Trombini, Romulo Rocha Santos, Francisco Roger Carneiro Ribeiro, Mauricio Mancio, Claudio de Souza Kazmierczak , Marlova Piva Kulakowski

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/