Propriedades de blindagem de fótons do TiO2 e WO2 incorporados em concreto comum: Avaliação para aplicações em radioterapia

Autores

  • Cecília Borges Moreto Division of Medical Physics, Institute of Radiation Protection and Dosimetry
  • Eduardo De Paiva Division of Medical Physics, Institute of Radiation Protection and Dosimetry

DOI:

https://doi.org/10.15392/2319-0612.2025.2841

Palavras-chave:

atenuação de fótons, materiais de blindagem, TiO2, WO2

Resumo

Este estudo computacional avalia as propriedades de blindagem de fótons do dióxido de titânio (TiO₂) e do dióxido de tungstênio (WO₂) quando incorporados ao concreto comum. A análise utiliza o banco de dados XCOM do National Institute of Standards and Technology (NIST) para calcular os coeficientes de atenuação de massa, as camadas deci-redutoras (TVL), os livres caminhos médios (MFP) e a eficiência de proteção contra radiação (RPE) em energias de fótons que variam de 1 a 10 MeV. Os resultados demonstram que o concreto acrescido de TiO₂ e WO₂ apresenta uma melhoria significativa na eficiência de blindagem de fótons em comparação com o concreto convencional, particularmente em energias de fótons mais altas. Em 6 MeV, o TVL para concreto comum é 46% maior que o TVL para a amostra na qual 50% da brita foi substituída por TiO2 (por volume), e é 237% maior que o TVL para a amostra quando se considera a incorporação de WO2 na mesma proporção. Em 10 MeV, essas diferenças mudam para 42% e 338%, respectivamente, para as amostras contendo TiO2 e WO2. Essas descobertas destacam as propriedades de blindagem superiores dos compostos de TiO2 e WO2, sugerindo que eles têm forte potencial para aplicações em salas de instalações de radioterapia e blindagem de sistemas nucleares. A validação experimental desses resultados computacionais está planejada para trabalhos futuros, de modo a confirmar sua aplicabilidade prática.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] BASKAR, R.; YAP, S. P.; CHUA, K. L. M.; ITAHANA, K. The diverse and complex roles of radiation on cancer treatment: therapeutic target and genome maintenance. American Journal of Cancer Research, v. 2, n. 4, p. 372-382, 2012.

[2] BASKAR, R.; LEE, K. A.; YEO, R.; YEOH, K.-W. Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences, v. 9, n. 3, p.193-199, 2012.

[3] National Council on Radiation Protection and Measurements. Structural Shielding Design and Evaluation for Medical Use of X-Rays and Gamma Rays of Energies Up to 10 MeV. NCRP Report No. 151, 2005.

[4] DE PAIVA, E. The Inverse-Square Law and the Exponential Attenuation Law Used to the Shielding Calculation in Radiotherapy on a High School Level. The Physics Teacher, v. 54, p. 239-242, 2016.

[5] KAÇAL, M. R.; AKMAN, F.; SAYYED, M. I.; AKMAN, F. Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nuclear Engineering and Technology, v. 51, n. 3, p. 818-824, 2019.

[6] MOLLAH, A. S. Evaluation of Gamma Radiation Attenuation Characteristics of Different Type Shielding Materials used in Nuclear Medicine Services. Bangladesh Journal of Nuclear Medicine, v. 21, n. 2, p. 108-114, 2019.

[7] AL-BURIAHI, M. S.; ALZAHRANI, J. S.; OLARINOYE, I. O.; MUTUWONG, C; ELSAEEDY, H. I.; ALOMAIRY, S.; TONGUÇ, B. T. Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate glasses: a new non‐toxic candidate for shielding applications. Journal of Materials Science: Materials in Electronics, v. 32, p. 15080-15094, 2021.

[8] AKKURTA, I.; AKYILDIRIMA, H.; MAVIA, B.; KILINCARSLANB, S.; BASYIGITB, C. Gamma-ray shielding properties of concrete including barite at different energies. Progress in Nuclear Energy, v. 52, p. 620-623, 2010.

[9] WALY, EL-SAYED A.; BOURHAM, M. A. Comparative study of different concrete composition as gamma-ray shielding materials. Annals of Nuclear Energy, v. 85, p. 306-310, 2015.

[10] NEVILLE, A. M. Propriedades do concreto. Porto Alegre, RS: Bookman, 2016. p. 1–61. ISBN 978-85-8260-366-6.

[11] DONG, M.; XUE, X.; YANG, H.; LIU, D.; WANG, C.; LI, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. Journal of Hazardous Materials, v. 318, p. 751–757, 2016.

[12] DE PAIVA, E. A study on the cost of concrete shielding in a standard radiotherapy facility room. Brazilian Journal of Radiation Sciences, v. 6, p. 1-18, 2018.

[13] DE PAIVA, E. An estimation of cost of concrete shielding in a radiotherapy room housing a clinical linear accelerator that produces high-energy photons. Studies in Health Sciences, Curitiba, v. 3, p. 1495-1507, 2022.

[14] GOUDA, M. M; ABBAS, M. I.; EID, M. H.; ZIEDAN, M. S.; IBRAHIM, M. A.; TAWFIK, M. M.; EL‑KHATIB, A. M. Impact of micro/nano cadmium oxide on shielding properties of cement-ball clay matrix. Scientific Reports, v. 13, p. 18224, 2023.

[15] HAMAD, M.; DWAIKAT, N.; MHAREB, M.; SAYYED, M.; HAMAD, R.; ALAJERAMI, Y.; ALMESSIERE, M.; SALEH, G.; ALOMARI, A. H.; ZIQ, K. Influence of erbium on structural, and charged particles, photons, and neutrons shielding properties of Ba1–Er SnO3 perovskite ceramics. Journal of Rare Earths, v. 42, n. 4, 724–732, 2023.

[16] MHAREB, M. Optical, Structural, Radiation shielding, and Mechanical properties for borosilicate glass and glass ceramics doped with Gd2O3. Ceramics International, v. 49, n. 22, p. 36950–36961, 2023.

[17] HAMAD, M. K. Effects of bismuth substitution on the structural and ionizing radiation shielding properties of the novel BaSnBiO perovskites: An experimental study. Materials Chemistry and Physics, v. 308, p. 128254, 2023.

[18] SAYYED, M. Effect of WO3 on the attenuation parameters of TeO2–La2O3-WO3 glasses for radiation shielding application. Radiation Physics and Chemistry, v. 215, p. 111319, 2023.

[19] SAYYED, M. I.; KAKY, K. M.; MHAREB, M. H. A.; AL-KEISY, A.; BAKI, S. O. Impact of CuO on TeO2–GeO2–ZnO–Al2O3–MgO glass system for ionizing shielding applications. Journal of Materials Science: Materials in Electronics, v. 34, n. 36, p. 2277, 2023.

[20] SAYYED, M. I.; MHAREB, M. H. A.; KAKY, K. M. Characterization of Mechanical and Radiation Shielding Features of Borosilicate Glasses Doped with MoO3. Silicon, v. 16, n. 5, 1955–1965, 2023.

[21] MORETO, C. B.; DE PAIVA, E. An initial study on common concrete, titanium dioxide and tungsten dioxide for shielding of a standard external photon beam radiotherapy room. Studies in Health Sciences, Curitiba, v. 5, n. 1, p.13-27, 2024.

[22] ALYAMI, J.; AL-HADEETHI, Y.; FALLATAH, O. A.; BIRADAR, S.; SAYYED, M.; ALMUTAIRI, F. Tailoring glass characteristics: Unveiling the impact of PbO and ZnO in Titanium-Barium borate glasses for advanced radiation protection. Annals of Nuclear Energy, v. 212, p. 111069, 2024.

[23] RUIZ, E. L. Radiation Shielding Analysis of Barium-Titanium-Borate Glasses Doped with Zinc Oxide. Nexus of Future Materials, v. 1, p. 80-85, 2024.

[24] HAMAD, M. K.; SAYYED, M. I.; MHAREB, M. H. A.; ELSAFI, M.; HANFI, M.Y.; MAHDI, M. A.; KHANDAKER, M. U. Effectiveness of barium oxide and zinc oxide in borate-based glasses for gamma radiation shielding. Radiation Physics and Chemistry, v. 229, n. 4, p. 112443, 2025.

[25] HAMED, M. K. Enhancing Ionizing Radiation Shielding Properties with PbO and ZnO Substitutions in B2O3-BaO-TiO2 Novel Glass System. Radiation Physics and Chemistry, v. 229, n. 4, p. 112499, 2025.

[26] NIST XCOM. XCOM: Photon Cross Sections Database. Available in: https://www.nist.gov/pml/xcom-photon-cross-sections-database. Accessed on: 10 dez. 2024.

[27] SWINEHART, D. F. The Beer-Lambert law. Journal of Chemical Education, v. 39, n. 7, p. 333-335, 1962.

Publicado

20-06-2025

Edição

Seção

Artigos

Como Citar

Propriedades de blindagem de fótons do TiO2 e WO2 incorporados em concreto comum: Avaliação para aplicações em radioterapia. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 13, n. 2, p. e2841, 2025. DOI: 10.15392/2319-0612.2025.2841. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2841. Acesso em: 17 jul. 2025.