Pequeno Reator Modular Baseado em NuScale com Base de Tório

Autores

  • Diego M. E. Gonçalves a Nuclear Engineering Program / Universidade Federal do Rio de Janeiro / COPPE, Av. Horácio Macedo, 2030, Bloco G - Sala 206 - CT, University City, Rio de Janeiro, RJ, Brazil
  • Marcelo Vilela da Silva a Nuclear Engineering Program / Universidade Federal do Rio de Janeiro / COPPE, Av. Horácio Macedo, 2030, Bloco G - Sala 206 - CT, University City, Rio de Janeiro, RJ, Brazil
  • C. J. C. M. R. da Cunha b Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN), Av. Prof.Luis Freire N°200-Curado, Recife - PE, 50740-437, Brazil
  • Giovanni L. Stefani a Nuclear Engineering Program / Universidade Federal do Rio de Janeiro / COPPE, Av. Horácio Macedo, 2030, Bloco G - Sala 206 - CT, University City, Rio de Janeiro, RJ, Brazil

DOI:

https://doi.org/10.15392/2319-0612.2025.2881

Palavras-chave:

Núcleo do reator, Ciclo do combustível, NuScale, SMR, ciclos de combustível nuclear

Resumo

Este artigo propõe avaliar o conceito de elemento combustível, proposto por Radkwosky, que apresenta uma composição heterogênea com duas regiões distintas: uma região fértil no exterior e uma região físsil no interior. O conceito foi analisado comparando dados do núcleo convencional modelado com o código SERPENT. Os resultados obtidos foram utilizados para projetar um núcleo completo, com o objetivo de avaliar o desempenho, segurança e compará-lo com o núcleo original do Pequeno Reator Modular (SMR) da NuScale, atualmente em fase final de licenciamento. A análise da queima de combustíveis é fundamental para garantir um equilíbrio na queima dentro do núcleo, ajustar o coeficiente de reatividade, e gerenciar a queima de boro e outros venenos queimáveis, elementos cruciais para a segurança nuclear e a redução de resíduos de combustível. Foi verificado que é possível integrar esse novo conceito ao núcleo do PRM sem comprometer significativamente a segurança do reator. O estudo inclui diversas simulações computacionais, neutrônicas e termo-hidráulicas, fundamentais para validar a viabilidade e confiabilidade técnica deste novo conceito de combustível, oferecendo uma opção mais flexível e segura para a produção de energia nuclear em grande escala.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] AlRashidi, M. R. a. E.-H. M. E., 2009. A Survey of Particle Swarm Optimization Applications in Electric Power Systems. IEEE Transactions on Evolutionary Computation, pp. 913-918. DOI: https://doi.org/10.1109/TEVC.2006.880326

[2] AlRashidi, M. R. A. M. F. E.-H. M. E. &. E.-H. F., 2010. Applications of computational intelligence techniques for solving the revived optimal power flow problem. Electric Power Systems Research, pp. 694-702. DOI: https://doi.org/10.1016/j.epsr.2008.10.004

[3] Andrew Johnson, D. K. S. T. a. G. R., 2020. serpentTools: A Python Package for Expediting Analysis with Serpent,. Nuclear Science Engineering. DOI: https://doi.org/10.1080/00295639.2020.1723992

[4] Barthel, F. a. T. H., 2019. Thorium: Geology, Occurrence, Deposits and Resources.

[5] Black, G., Shropshire, D. & Araújo, K., 2021. Small modular reactor (SMR) adoption: Opportunities and challenges for emerging markets. s.l.:Woodhead Publishing Series in Energy. DOI: https://doi.org/10.1016/B978-0-12-823916-2.00022-9

[6] C.A.Lobo, M. & Stefani, G. L. d., 2024. Thorium as nuclear fuel in Brazil: 1951 to 2023. Nuclear Engineering Design. DOI: https://doi.org/10.1016/j.nucengdes.2024.112912

[7] Carelli, M. D. e. a., 2010. Economic Features of Integral, Modular, Small-to-Medium Size Reactors. Nuclear Engineering and Design, pp. 3267-3276.

[8] Cunha, C. J. C. M. R. d. et al., 2024. Single heated channel analysis of the AP-Th 1000 concept. Nuclear Engeineering and Design, Volume 420. DOI: https://doi.org/10.1016/j.nucengdes.2024.113033

[9] Galperin, A. S. M. &. R. A., 1997. Thorium Fuel for Light Water Reactors – Reducing Proliferation Potential of Nuclear Power Fuel Cycle. Science & Global Security, pp. 265-290. DOI: https://doi.org/10.1080/08929889708426440

[10] Ghimire, L. a. W. E., 2023. Small Modular Reactors: Opportunities and Challenges as Emerging Nuclear Technologies for Power Production. Journal of Nuclear Engineering and Radiation Science, p. 044501. DOI: https://doi.org/10.1115/1.4062644

[11] Gonçalves, D. M. E., Silva, M. V. d., Cunha, C. J. M. d. & Daniel Artur Pal, a., 2024. Feasibility of Converting NuScale SMRs from UO2 to Mixed (Pu,Th)O2 and (U,Th)O2 Cores: A Parametric Study of the Seed-Blanket Fuel Assembly. Nuclear Engineering and Design, Volume 424. DOI: https://doi.org/10.1016/j.nucengdes.2024.113230

[12] Hussein, E. M., 2020. Emerging small modular nuclear power reactors: A critical review. Physics Open, p. 100038.

[13] Hussein, E. M., 2020. Emerging small modular nuclear power reactors: A critical review. Physics Open. DOI: https://doi.org/10.1016/j.physo.2020.100038

[14] IAPWS, 2008. IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, pp. 7-150. DOI: https://doi.org/10.1007/978-3-540-74234-0_3

[15] Ingersoll, D., 2014. Deliberately small reactors and the second nuclear era. Progress in Nuclear Energy, pp. 128-135.

[16] Ingersoll, M. D. C. &. D. T., 2021. Handbook of Small Modular Nuclear Reactors. s.l.:Woodhead Publishing Series.

[17] International Atomic Energy Agency, 2024. Advanced reactors information system (ARIS).. [Online] Available at: https://aris.iaea.org/sites/power.html

[18] Jain, N. N. U. &. J. J., 2018. A Review of Particle Swarm Optimization. Eng. India Ser. , pp. 407-411. DOI: https://doi.org/10.1007/s40031-018-0323-y

[19] Jyothi, R. K., Melo, L. G. T. C. d., M.Santos, R. & Yoon, H.-S., 2023. An overview of thorium as a prospective natural resource for future energy. Front. Energy Resources - Nuclear Energy. DOI: https://doi.org/10.3389/fenrg.2023.1132611

[20] Kecek, A., Tucek, K., Holmstrom, S. & Uffelen, P. V., 2016. Development of M5 Cladding Material Correlations in the TRANSURANUS code. JRC Technical Reports, Issue 1, pp. 1-53.

[21] Kennedy, J. &. E. R., 1995. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, pp. 1942-1948. DOI: https://doi.org/10.1109/ICNN.1995.488968

[22] Khorasani, S. &. H. S., 2018. Control rod pattern optimization in nuclear reactors using PSO algorithm. Annals of Nuclear Energy, pp. 334-343.

[23] Locatelli, G., Bingham, C. & Mancini, M., 2014. Small modular reactors: A comprehensive overview of their economics and strategic aspects. Progress in Nuclear Energy, pp. 75-85. DOI: https://doi.org/10.1016/j.pnucene.2014.01.010

[24] Luka Snoj, M. R., 2006. Calculation of Power Density with MCNP in TRIGA reactor. Nuclear Energy for New Europe.

[25] NuScale Power, 2020. Part 2 - Final Safety Analysis Report (Rev.5)- Part 02 -Tier 02 - Chapter 04 - Reactor - Sections 04.01, s.l.: NuScale.

[26] Pambudi, Y. D. S. a. W. W. a. K. B., 2016. Particle Swarm Optimization-Based Direct Inverse Control for Controlling the Power Level of the Indonesian Multipurpose Reactor. Science and Technology of Nuclear Installations, pp. 1-9. DOI: https://doi.org/10.1155/2016/1065790

[27] Radkowsky, A. &. G. A., 1998. The Nonproliferative Light Water Thorium Reactor: A New Approach to Light Water Reactor Core Technology. Nuclear Technology, pp. 215-222. DOI: https://doi.org/10.13182/NT98-A2921

[28] Radkowsky, A. &. G. A., 2000. Thorium Fuel for Light Water Reactors: Reducing Proliferation Potential of Nuclear Power Fuel Cycle. Nuclear Technology, pp. 215-222.

[29] Radkowsky, A., 1985. The Seed-Blanket Core Concept. Nuclear Science and Engineering, pp. 381-387. DOI: https://doi.org/10.13182/NSE85-A18485

[30] Rosner, R. & S, G., 2011. Small Modular Reactors–Key to Future Nuclear Power Generation in the US. Energy policy institute at Chicago.

[31] Silva, M. V. et al., 2024. Optimized modular nuclear reactor project utilizing artificial intelligence: Seed-blanket concept. Nuclear Engineering and Design. DOI: https://doi.org/10.1016/j.nucengdes.2024.113187

[32] Singh, A. K. &. L. D. K., 2012. A hybrid PSO-GSA algorithm for optimization of control rod patterns in nuclear reactors. Annals of Nuclear Energy, pp. 220-230.

[33] Stefani, G. L. d. et al., 2023. Feasibility to convert the NuScale SMR from UO2 to a mixed (U,Th)O2 core: Parametric study of fuel element - Seed-blanket concept. World Journal of Nuclear Science and Technology.

[34] Todreas, N. E. & Kazimi, M., 2011. Nuclear Systems I -Thermohydraulic fundamentals. s.l.:Taylor & Francis. DOI: https://doi.org/10.1201/b14887

[35] Tong, G., Zhang, S., Wang, W. & Yang, G., 2023. A particle swarm optimization routing scheme for wireless sensor networks. Transactions on Pervasive Computing and Interaction. DOI: https://doi.org/10.1007/s42486-022-00118-1

[36] Valtavirta, E. F. a. Y. B. a. V., 2023. Definition of the neutronics benchmark of the NuScale-like core. Nuclear Engineering and Technology, pp. 3639-3647. DOI: https://doi.org/10.1016/j.net.2023.06.029

[37] Westinghouse, 2011. AP1000 Design Control Document Rev. 19. , ML11171A500, 2011, s.l.: U.S. Nuclear Regulatory Commission.

[38] Xu, Q. a. W. T. a. W. W., 2021. Nonlinear Dissipative Particle Swarm Algorithm and Its Applications. IEEE Access, pp. 158862-158871. DOI: https://doi.org/10.1109/ACCESS.2021.3131167

[39] Xu, Y. J. S. W. G. &. L. Z., 2021. Nonlinear dissipative particle swarm optimization algorithm for nuclear reactor core design. Annals of Nuclear Energy, p. 108124.

[40] Yang, X.-F. X. a. W.-J. Z. a. Z.-L., 2002. Dissipative particle swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), pp. 1456-1461.

Downloads

Publicado

11-07-2025