Characteristics of Pb2+ doped CsI matriz under gamma and neutron excitations
DOI:
https://doi.org/10.15392/bjrs.v7i2A.595Palavras-chave:
scintillator, crystal growth, gamma radiation, neutron radiation.Resumo
In recent years, there has been an increasing interest in finding new fast scintillating material or improve the characteristics of known scintillators for the demand of high energy physics, industrial and nuclear medical applications. Ions divalent lead Pb2+ built in some crystal structures are efficient emission centers and their applications in scintillators was and still is the reason of an intensive study of emission properties of different compounds containing these ions. In this context, the crystals of Pb2+ doped CsI matrix were grown by the vertical Bridgman technique and subjected to annealing in vacuum of 10-6 mbar and continuous temperatura of 350°C, for 24 hours, and then they were employed. To evaluate the response of the CsI:Pb scintillator crystal to gamma radiation, radioactive sources of 137Cs (662 keV), 60Co (1173 keV and 1333 keV), 22Na (511 keV and 1275 keV) and 133Ba (355 keV) was used. The operating voltage of the photomultiplier was 2700 V for the detection of gamma rays and the accumulation time in the counting process was 600 s. The scintillator response to neutron radiation from a radioactive source of Am/Be with energy range of 1 MeV to 12 MeV was available. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 x 106 neutrons / second. The operating voltage of the photomultiplier tube was 1300 V. The accumulation time in the counting process was 600 s. With the results obtained, it may be observed that the crystals are sensitivetothese radiations.
Downloads
Referências
KNOLL,G. F. Radiation Detection and Measurement, 4th ed. New York, NY, USA:John Wiley & Sons, 2010.
TSOULFANIDIS, N. Measurement and Detection of Radiation, New York, N.Y.: Harper & Row, 1983.
ZAZUBOVICH, S. Physics of halide scintillators. Radiation Measurements, v. 33, p. 699-704, 2001.
SELVASEKARAPANDIAN, S.; BRAHMANANDHAN, G.M.; MALATHI, J.; JOSEPH, V. Thermoluminescence and photoluminescence studies on gamma irradiated CsI:Pb2+ crystals. Radiation Effects & Defects in Solids, v.161, n°9, p.559-570, 2006.
BABIN, V.; KRASNIKOV, A.; NIKL, A.; NITSCH, K.; STOLOVITS, A.; Zazubovich, S. Luminescence and relaxed excited state origin in CsI:Pb crystals. Journal of Luminescence, v.101, p.219-226, 2003.
KESZTHELYI, L.S.; FOLDVÁRI, I.; VOSKA, R.; FODOR, Z.; SERES, Z. Decay time measurements on pure CsI scintillators prepared by different methods. Nucl Instrum Methods Phys Res, v.A303, p. 374-380, 1991.
BRIDGMAN, P. W. Proc. Amer. Acad. Arts Sci., v. 60, p. 303-383, 1925.
PEREIRA, M.C.C.; FILHO, T.M. Scintillation Characteristics of CsI Crystal Doped Br under Gamma and Alpha Particles Excitation. Materials Sciences and Applications, v. 05, p. 368-377, 2014.
PEREIRA, M.C.C.; FILHO, T.M.; HAMADA, M.M. The effect of Pb 2+ dopant in the crys-tal of CsI and its application as scintillation detector: a study of alpha particles. Radiation Effects and Defects in Solids, v. 167, p. 921-928, 2012.
MARGULIES,M.; WITOMSKI,P.; DUFFAR,T. Optimization of the Bridgman crystal growth process. Journal of Crystal Growth, v.266, p. 175-181, 2004.
RAVI, B.; RAJARAJAN,G. Study on growth and optical, scintillation properties of thalli-um doped cesium iodide scintillator crystal, Oriental Journal of Chemistry, v. 30, p. 581-586, 2014
.
HAO,G.R.; HUI,Z.S.; CHUAN,Z.Z.; KAN, Z.; FAN, Y.; YING,L.H.; FENG, C.X. Luminescence and decay time properties of pure CsI crystals. Journal of Inorganic Materials, v.32 (2), p.169-174, 2017.
AMSLER, C.; GROGLER, D.; FOFFRAIN, W.; LINDELOF, D.; MARCHESOTTI, M.; NIEDERBERGER, P.; PRUYS, H.; REGENFUS, C.; RIEDLER, P.; ROTONDI, A. Temperature dependence of pure CsI: scintillation light yeld and decay time. Nucl Instrum Methods Phys Res., v.A480, p.494-500, 2002.
MIKHAILIK, V. B.; KAPUSTYANYK, V; TSYBULSKYI, V.; RUDYK, V.; KRAUS, H. Luminescence and scintillation properties of CsI: A potential cryogenic scintillator. Phys Status Solidi B, v.252, n°4, p. 804-810, 2015.
R. Novoyny, “Inorganic scintillators-a basic material for instrumentation in physics”, Nu-cl.Instrum. Methods Phys. Res. v.A537, pp.1-5 (2005).
CMELCHER, C. L. Perspectives on the future development of new scintillators. Nucl Instrum Methods Phys Res, v.537, p. 6-14, 2005.
KOBAYASHI, M.; USUKI, Y.; ISHII, M.; ITOH, M.; KIKL, M. Further study on diffe-rent dopings into PbWO4 single crystals to increase the scintillation light yield. Nucl Instrum Me-thods Phys Res, v.540, p.381-394, 2005.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2021 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/