Dosimetry Study of a VARIAN 600 C/D Linear Accelerator Head Model using MCNP5 Monte Carlo Code
DOI:
https://doi.org/10.15392/bjrs.v7i3.832Palavras-chave:
MCNP, PDD, radiotherapyResumo
In radiotherapy treatment planning, tools that improve the accuracy and quality of the radiation treatment for cancer are important for the decreased death of healthy tissue and the probability to produce cancer cells. The purpose is to establish the simulation principles in MCNP reproducing the x-ray generation from the electron beam to the resultant photon beam used for radiotherapy in a LINAC VARIAN 600 C/D, being the main goal to approximate the x-ray spectrum, the profile dose and the relative dose to experimental ones. This analysis shows the difficulties to simulate the linear accelerator and how they are represented in the profile dose and relative dose and the probable margin of error obtained compared to the real case. These difficulties are due to the lack of information from the suppliers to the academic public. Therefore, some parts of the model should be inferred, such as the electron beam source and its angle.
The results show the experimentally measured data comparison to the Monte Carlo results, where the measurements of PDD are inside the margin of error for buildup region and the flat region for the beam profile dose according to reference criteria. The developed model would help to optimize the simulation of patient dosimetry in radiotherapy treatment planning.
Downloads
Referências
Ministerio da Saúde, “Rio de Janeiro ganha novo Centro de Diagnóstico do Câncer de Próstata”, http://portalms.saude.gov.br/component/content/article/41997-rio-de-janeiro-ganha-novo-centro-de-diagnostico-do-cancer-de-prostata, 2017
Alex C. H. Oliveira, José W. Vieira, Marcelo G. Santana and Fernando R. A. Lima, “Monte Carlo Simulation of a Medical Linear Accelerator for Generation of Phase Spaces”, International Nuclear Atlantic Conference, Recife, Brazil, November 24-29, 2013.
Ali Nedaie Hassan et al., “Monte Carlo study of electron dose distributions produced by the elekta precise linear accelerator”, Reports of Practical Oncology and Radiotherapy, 11(6):287–292, 2006.
Karzmark C. J., Nunan C. S., and Tanabe E., “Medical Electron Accelerators”, McGraw-Hill, New York, 1993.
Mesbahi, A., “Developement a simple point source model for Elekta SL-25 linear accelerator using MCNP4C Monte Carlo code”, Iran Journal of Radiation Research, 4 (1):7-14, 2006.
Mesbahi, A., Michael Fix, Mahmoud Allahverdi, Ellen Grein and Hossein Garaati, “Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements”, Applied Radiation and Isotopes, 62: 469–477, 2005.
Mohammad Taghi et al., “Monte Carlo simulation for Neptun 10 PC medical linear accelerator and calculations of output factor for electron beam”, Reports of Practical Oncology and Radiotherapy, 17(2): 115–118, 2012.
Podgorsak, E. B., Review of radiation oncology physics: a handbook for teachers and students, Education Report Series, International Atomic Energy Agency, Vienna, Austria, 2003.
Sempau, J. et al., “Monte Carlo simulation of electron beams from an accelerator head using PENELOPE”, Physics in Medicine and Biology, 46(4):1163–1186, 2001.
Sheikh-Bagheri, D. and Rogers, D. W. O., “Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code”, Medical Physics, vol. 29, pp. 391-402, 2002.
Sousa, R.V., “Dose rate influence on deep dose deposition using a 6 MV x-ray beam from a linear accelerator”, Brazilian Journal of Physics, v. 39, No.2, 2009.
Varian Medical Systems, Inc. C-Series CLINAC Clinical User Guide. Delivery Systems. P/N 1102903-03 7/99. USA, 1999.
Venselaar, J., Welleweerd, H., Mijnheer, B., “Tolerances for the accuracy of photon beam dose calculations of treatment planning systems”, Radiotherapy Oncology, 60: 191-201, 2001.
Verhaegen, F. and Seuntjens, J., “Monte Carlo modeling of external radiotherapy photon beams”, Physics in Medicine and Biology, 48: R107-R164, 2003.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2019 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/