Development of an automated source port in IoT for application in industrial process tomography

Authors

  • Diego Vergaças de Sousa Carvalho Instituto de Pesquisas Energéticas e Nucleares https://orcid.org/0000-0001-5935-1460
  • Carlos Henrique de Mesquita Instituto de Pesquisas Energéticas e Nucleares
  • Gustavo Martinez Gregianin FATEC Zona Sul

DOI:

https://doi.org/10.15392/bjrs.v9i1A.1349

Keywords:

source ports, Internet of Things, Industrial Process Tomography

Abstract

Computed tomography technology uses an electromagnetic radiation source or particulate radiation source, to analyze / study different samples that can range from living organisms to the most diverse objects (rocks, phantoms, etc.). The use of the radioactive materials may cause harm to the operator if he is exposed to the source of radiation, so aiming at the safety of the operator, the objective of this work is to develop an Internet of Things automation system for the opening of the Industrial Process Tomography source port for industrial tomography applications. Thus, this system can drive the stepper motors through this platform can be opened at a safe distance to the operator, avoiding the operator to take radiation dose to perform this operation. For the IPT project, five source ports were made so that each was positioned diametrically opposite each array of detectors. In this project we used 192Ir sources that have activity of 18,500 MBq and that were produced in the reactor IEA-R1, from the neutron bombardment of the pellet containing stable isotope 191Ir. The main characteristics of 192Ir are: half-life of 74.2 days; radiation energy from 0.13 to 0.65 MeV. For the safety of the operator during the opening of the sources, an automated opening system with IoT that can be activated with software installed on the tomography or by a smartphone application  by the MQTT protocol, which makes it possible to be monitored in real time at long distance showing the opening and closing status of each source port.

Downloads

Download data is not yet available.

Author Biographies

Diego Vergaças de Sousa Carvalho, Instituto de Pesquisas Energéticas e Nucleares

PhD in Science of Nuclear Technology Application at University of Sao Paulo Nuclear and Energy Research Institute USP / IPEN with CNPq Scholarship (2014), Degree in Physics Degree by Faculties Oswaldo Cruz (2011) and Technician in Electronics Manufacturing Automation by SENAI Anchieta School (2003) ). Specialist in Industrial Tomography, Nuclear Instrumentation, Radiological Protection, Electronics, Microcontrollers, Electronic Instrumentations, Non-Destructive Analyzes. Professor of Physics, Chemistry, Mathematics, Electronics and Astronomy. Science Lab teaching specialist. Use of Excel, Word, PowerPoint, Linux (basic), Arduino, Proteus and programming languages in Python (basic) and C # (basic).

Carlos Henrique de Mesquita, Instituto de Pesquisas Energéticas e Nucleares

bachelor's at Física from Pontifícia Universidade Católica de São Paulo (1977), master's at Nuclear Engineering from Universidade de São Paulo (1983) and doctorate at Tecnologia Nucler Básica from Instituto de Pesquisas Energéticas e Nucleares-USP (1991). Has experience in Nuclear Engineering, focusing on Applications of Radioisotopes, acting on the following subjects: Compartmental analysis, kinectical analysis, radiation detectors, mathematical models, nuclear electronics and radioactivity applications

Gustavo Martinez Gregianin, FATEC Zona Sul

Possui curso-tecnico-profissionalizante em Pré-impressão gráfica pela SENAI - Departamento Regional de São Paulo(2011) e ensino-medio-segundo-graupelo Instituto Paralelo de Ensino(2002). Tem experiência na área de Ciência da Computação, com ênfase em Metodologia e Técnicas da Computação.

References

E. Y. TOYODA, Evolução das doses no ambiente do reator IEA-R1 e tendências com base nos resultados atuais. Masters dissertation. ed. São Paulo: IPEN, 2018.

M. E. C. M. ROSTELATO, Preparação de fontes de irídio-192 para uso em braquiterapia. Masters dissertation. ed. São Paulo: IPEN, 1997.

D. V. S. CARVALHO, Efeitos do colimador na qualidade de imagem em tomógrafo industrial de terceira geração. Masters dissertation. ed. São Paulo: IPEN, 2014.

Kalatec, Motor de passo HT23-397, 2018. [Online]. Available: https://www.kalatec.com.br/motor-de-passo-12nm/. [Acesso em 25 07 2019].

ESPRESSIF, Espressif Systems.com. Espressif, 2019. Available at: <https://www.espressif.com/en/esp-wroom-32/resources>. Last accessed: 04 jun. 2019

MQTT DASHBOARD, HiveMQ Enteprise MQTT broker. Available at:

< http://www.mqtt-dashboard.com/index.html >. Last accessed: 29 jun 2019

BARROS, M. MQTT - Protocolos para IoT. Embarcados, 2015. Available at: <https://www.embarcados.com.br/mqtt-protocolos-para-iot/>. Last accessed: 16 mar. 2019.

CLOUD MQTT, Documentation Getting started. CloudMQTT, 2018. Available at: <https://www.cloudmqtt.com/docs/index.html>. Last accessed: 16 mar. 2019.

ARDUINO, Arduino IoT Cloud. Arduino.cc, 2019. Available at: <https://www.arduino.cc/en/IoT/HomePage>. Last accessed: 02 jun. 2019.

D. V. S. CARVALHO, Desenvolvimento e análise de um sistema multical e multiufontes para tomografia de processos industrial em tempo real. Doctoral thesis. ed. São Paulo: IPEN, 2019.

F. SOUZA, Use o MQTT DASH para contorlar uma lâmpada remotamente. Embarcados, 2018. Available at: <https://www.embarcados.com.br/mqtt-dash/>. Last accessed: 16 mar. 2019.

Downloads

Published

2021-04-30

How to Cite

Vergaças de Sousa Carvalho, D., Henrique de Mesquita, C., & Martinez Gregianin, G. (2021). Development of an automated source port in IoT for application in industrial process tomography. Brazilian Journal of Radiation Sciences, 9(1A). https://doi.org/10.15392/bjrs.v9i1A.1349

Issue

Section

The Meeting on Nuclear Applications (ENAN) 2019