Crystallographic texture of hot rolled uranium-molybdenum alloys

Authors

  • Guilherme Fernandes Nielsen
  • Nathanael Wagner Sales Morais
  • Nelson Batista de Lima

DOI:

https://doi.org/10.15392/bjrs.v8i3A.1406

Keywords:

U-Mo alloys, hot rolling, texture

Abstract

The uranium molybdenum (U-Mo) alloys have potential to be used as low enriched uranium nuclear fuel in research, test and power nuclear reactors. U-Mo alloy with composition between 7 and 10 wt% molybdenum shows excellent body centered cubic phase (γ phase) stabilization and presents a good nuclear fuel testing performance. Hot rolling is commonly utilized to produce parallel fuel plate where it promotes the cladding and the fuel alloy bonding. The mechanical deformation generates crystallographic preferential orientation, the texture, which influences the material properties. This work studied the texture evolution in hot rolled U-Mo alloys. The U7.4Mo and U9.5Mo alloys were melted in a vacuum induction furnace, homogenized at 1000°C for 5 h and then hot rolled at 650°C in three height reductions: 50, 65 and 80%. The crystalline phases and the texture were evaluated by X-ray diffraction (XRD). The as-cast and processed alloys microstructures were characterized by optical and electronic microscopies. The as-cast, homogenized and deformed alloys have γ phase. It was found microstructural differences between the U7.4Mo and U9.5Mo alloys. The homogenized treatment showed effective for microsegregation reduction and were not observed substantial grain size increasing. The deformed uranium molybdenum alloys presented α, γ, θ texture fibers. The intensity of these texture fibers changes with deformation step.

Downloads

Download data is not yet available.

References

PASQUALINI, E. E.; ROBINSON, A. B.; PORTER, D. L.; WACHS, D. M.; FINLAY, M. R. Fabrication and testing of U - 7Mo monolithic plate fuel with zircaloy cladding, J. Nucl. Mater., v. 479, p. 402-410, 2016.

WACHS, D. M. RERTR fuel development and qualification plan, Idaho Falls: Idaho National Laboratory, 2007. 65p.

LOPES, D. A. Interação entre precipitação e recristalização em liga de urânio contendo nióbio e zircônio (Mulberry alloy), São Paulo: Universidade de São Paulo, 2014. 176p.

JOSHI, V. V.; NYBERG, E. A.; LAVENDER, C. A.; PAXTON, D.; GARMESTANI, H.; BURKES, D. E. Thermomechanical process optimization of U-10wt% Mo--Part 1: high-temperature compressive properties and microstructure, J. Nucl. Mater., v. 465, p. 805-813, 2015.

LISBOA, H.; MARIN, J.; BARRERA, M. Engineering of fuel plates on uranium-molybdenum monolithic: critical issues, World J. Nucl. Sci. Technol., v. 5, p. 274-286, 2015.

SURYAMAN, G. K.; WILDAN, M. W. Production of uranium − molybdenum alloy as a candidate for nuclear research reactor fuel, Urania, v. 24, n. 3, p. 135-142, 2018.

CLARK, C. R.; KNIGHTON, G. C.; MEYER, M. K.; HOFMAN, G. L. Monolithic fuel plate development at argonne national laboratory, In: INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST REACTORS, 2003, Chicago. Annals... Chicago: Argonne National Laboratory, 2003.

PEREZ, E.; YAO, B.; KEISER, D. D.; SOHN, Y. H. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, J. Nucl. Mater., v. 402, n. 1, p. 8-14, 2010.

TOBY, B. H. EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr., v. 34, n. 2, p. 210-213, 2001.

HIELSCHER, R.; SCHAEBEN, H. A novel pole figure inversion method : specification of the MTEX algorithm, J. Appl. Cryst., v. 41, p. 1024–1037, 2008.

DE OLIVEIRA, F. B. V.; DE CARVALHO, E. F. U.; RIELLA, H. G. Fabrication results of gamma uranium-molybdenum alloys fuels, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, 2009, Rio de Janeiro. Annals… Rio de Janeiro, Comissão Nacional de Energia Nuclear, 2009.

CLARKE, A. J.; CLARKE, K. D.; MCCABE, R. J.; NECKER, C. T.; PAPIN, P. A.; FIELD, R. D.; KELLY, A. M.; TUCKER, T. J.; FORSYTH, R. T.; DICKERSON, P. O.; FOLEY, J. C.; SWENSON, H.; AIKIN, R. M.; DOMBROWSKI, D. E. Microstructural evolution of a uranium-10 wt.% molybdenum alloy for nuclear reactor fuels, J. Nucl. Mater., v. 465, p. 784-792, 2015.

LOPES, D. A.; RESTIVO, T. A. G.; N. B. DE LIMA, PADILHA, A. F. Gamma-phase homogenization and texture in U–7.5Nb–2.5Zr (Mulberry) alloy, J. Nucl. Mater., v. 449, p. 23-30, 2014.

JANA, S.; SCHEMER-KORHN, A.; OVERMAN, N.; SWEET, L.; KAUTZ, E.; LAVENDER, C.; JOSHI, V. Eutectoid Transformation in U10Mo Alloy : Effect of Deformation History and Homogenization Heat Treatment, Richland: Pacific Northwest National Laboratory, 2019. 34p.

FRAZIER, W. E.; HU, S.; OVERMAN, N.; LAVENDER, C.; JOSHI, V. V. Short communication on Kinetics of grain growth and particle pinning in U-10 wt.% Mo, J. Nucl. Mater., v. 498, p. 254-258, 2018.

KESTENS, L. A. I.; PIRGAZI, H. Texture formation in metal alloys with cubic crystal structures, Mater. Sci. Technol., v. 32, n. 13, p. 1303-1315, 2016.

LOBANOV, M. L.; DANILOV, S. V.; PASTUKHOV, V. I.; AVERIN, S. A.; KHRUNYK, Y. Y.; POPOV, A. A. The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Des., v. 109, p. 251-255, 2016.

ZHANG, Z.; CHEN, D.; ZHAO, H.; LIU, S. A comparative study of clock rolling and unidirectional rolling on deformation/recrystallization microstructure and texture of high purity tantalum plates, Int. J. Refract. Met. Hard Mater., v. 41, p. 453-460, 2013.

DILLAMORE, I. L.; ROBERTS, W. T. Rolling textures in f.c.c. and b.c.c. metals, Acta Metall., v. 12, n. 3, p. 281-293, 1964.

Downloads

Published

2021-02-09

How to Cite

Nielsen, G. F., Morais, N. W. S., & Lima, N. B. de. (2021). Crystallographic texture of hot rolled uranium-molybdenum alloys. Brazilian Journal of Radiation Sciences, 8(3A (Suppl.). https://doi.org/10.15392/bjrs.v8i3A.1406

Issue

Section

XXI Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XXI ENFIR) and VI ENIN