Growth and optical caracteristics of the CsI:Li scintillator crystal for use as radiation detector

Authors

  • Maria da Conceição Costa Pereira Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
  • Tufic Madi Filho Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
  • Lucas Faustino Tomaz Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
  • José Roberto Berretta Instituto de Pesquisas Energéticas e Nucleares- IPEN/CNEN-SP

DOI:

https://doi.org/10.15392/bjrs.v9i1A.1478

Keywords:

crystal growth, gamma radiation, neutron radiation, scintillator.

Abstract

Materials capable of converting ionizing radiation into light photons are called scintillators, some have specific efficiencies for certain applications and types of radiation, e.g. gamma, X-ray, alpha, beta and neutrons. CsI:Tl and NaI:Tl crystals are commonly found in the market because they have several applications, but few studies have been done on lithium doped cesium iodide crystal (CsI:Li). The lithium element, in this crystal used as a dopant, is also exploited as a converter for neutron detection, as it has a shock section of 940 barns for thermal neutrons. The study of the CsI:Li crystal is convenient considering the natural abundance of the lithium element with 7.5%, besides the interest in having a low cost national scintillator material with an opportunity to search the response of a detector for different types of radiation. The CsI:Li crystal was grown with molar concentration 10-4 to 10-1, using the vertical Bridgman technique. The parameters involved in the growth process were investigated. The transmittance was evaluated in the spectral region from 190 nm to 1100 nm.  Luminescence emission spectra for the CsI:Li crystal were evaluated by photometric analysis of the crystal  stimulated with a 137Cs (662 keV) source in front of the coupled sample at the monochromator input. The crystals showed of maximum luminescence intensity at the wavelength of 420 nm. The response of the  scintillators when excited with gamma radiation of 241Am, 133Ba, 22Na, 137Cs, 60Co and neutron radiation from the AmBe source, with energy range of 1 MeV to 12 Mev was evaluated.

Downloads

Download data is not yet available.

Author Biographies

Maria da Conceição Costa Pereira, Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP

Centro de Tecnologia das Radiações - CETER

Tufic Madi Filho, Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP

Centro de Tecnologia das Radiações - CETER

Lucas Faustino Tomaz, Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP

Centro de Tecnologia das Radiações - CETER

José Roberto Berretta, Instituto de Pesquisas Energéticas e Nucleares- IPEN/CNEN-SP

Centro de Reator Nuclear

References

YANAGIDA, T. Inorganic scintillating materials and scintillation detectors. Proceedings of the Japan Academy, Serie B Physical and biological sciences, v. 94(2), p. 75-97, 2018.

KNOLL, G. F. Radiation Detection and Measurement, 4rd ed. New York: John Wiley & Sons, USA, 2010.

DUJARDIN, C.; AUFFRAY, E.; BOURRET-COURCHESNE, E.; DORENBOS, P.; LECOQ, P.; NIKL, M.; VASIL’EV, A. N.; YOSHIKAWA, A.; and ZHU, R. Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Transactions on Nuclear Science, v. 65, n.8, p. 1977-1997, 2018.

ZAZUBOVICH,S. Physics of halide scintillators. Radiation Measurements, v. 33, p. 699-704, 2001.

DERENZO, S.E.; WEBER, M. J.; BOURRET-COURCHESNE, E.; and Klintenberg, M. K. The Quest for Ideal Inorganic Scintillator. Nuclear Instruments and methods in Physics Resarch A, v. 505, p. 111-117, 2003.

ZHU, R. Y. The next Generation of Crystal Detectors. Journal of Physics, Conference Series, v. 587, p. 1-12, 2015.

MILBRATH, B. D.; PEURRUNG, A. J. BLISS, M.; and WEBER, W. J. Radiation Detectors Materials: An Overview. Journal of Materials Research, v. 23, n. 10, p. 2561-2566, 2008.

EIJK, C. W. E. V. Inorganic Scintillators for Thermal Neutron Detection. Radiation Measurements, v. 38, p 337-342, 2004.

NAGARKAR, V. V.; OVECHKINA, E. E.; Bhandari, H. B.; PANDIAN, L. S.; MORE, M. J.; RIEDEL, R. A.; and MILLER, S. R. New Structured Scintillators for Neutron Radiography. Physics Procedia, v. 69, p. 161-168, 2015.

BRIDGMAN, P.W. Proc. Amer. Acad. Arts Sci., v. 60, p. 303-383, 1925.

CHEN, H.; GE, C.; LI, R.; WANG, J.; WU, C.; and ZENG, X. Growth of Lead Molybdate Crystals by Vertical Bridgman Method. Bulletin of Materials Science, v. 28, n. 6, p. 555-560, 2005.

MAO, R.; ZHANG, L.; and ZHU, R. Y. Optical and scintillation Properties of Inorganic scintillators in High Energy Physics. IEEE Transaction on Nuclear Science, v. 55, n. 4, p. 2425-2431, 2008.

MIKHAILIK, V. B.; KAPUSTYANYK, V.; TSYBULSKYI, V.; RUDYK, V.; KRAUS, H. Luminescence and Scintillation Properties of CsI – a Potential Cryogenic Scintillator. Physics Status Solidi B, v. 252, n. 4, p. 804-810, 2015.

KORZHIK, M.; BRINKMANN, K. T.; DOSOVITSKIY, G.; DORMENE, V.; FEDOROV, A.; KOMAR, D.; KOZEMIAKIN, V.; KOZLOV, D.; MECHINSKY, V.; ZAUNICK, H. G.; YASHIN, I.; IYUDIN, A.; BOGOMOLOV, V.; SVERTILOV, S.; MAXIMOV, I. Detection of Neutrons in a Wide Energy Range with Crystalline Gd3Al2Ga3O12, Lu2SiO5 and LaBr3 doped with Ce Scintillators. Nuclear Instruments and methods in Physics Research, A, v. 931, p. 88-91, 2019.

Mayer, M.; Bliss, M. Optimization of Lithium-Glass Fibers with Lithium Depleted Coating for Neutron Detection. Nuclear Instruments and methods in Physics Research, A, v. 930, p. 37-41, 2019.

Downloads

Published

2021-04-30

How to Cite

Pereira, M. da C. C., Filho, T. M., Tomaz, L. F., & Berretta, J. R. (2021). Growth and optical caracteristics of the CsI:Li scintillator crystal for use as radiation detector. Brazilian Journal of Radiation Sciences, 9(1A). https://doi.org/10.15392/bjrs.v9i1A.1478

Issue

Section

The Meeting on Nuclear Applications (ENAN) 2019

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)