Study of new routes for purification of fission 99Mo

Authors

  • Marcos Oliveira Damasceno Instituto de Pesquisas Energéticas e Nucleares - IPEN https://orcid.org/0000-0002-8066-2965
  • Fernanda Marques Alves da Silva Instituto de Pesquisas Energéticas e Nucleares - IPEN
  • Jacinete Lima dos Santos Instituto de Pesquisas Energéticas e Nucleares - IPEN
  • Ricardo Rodrigues Dias Instituto de Pesquisas Energéticas e Nucleares - IPEN
  • Christina A. L. G. O. Forbicini Instituto de Pesquisas Energéticas e Nucleares - IPEN

DOI:

https://doi.org/10.15392/bjrs.v9i2.1623

Keywords:

99Mo fission, 99Mo purification, 99Mo sublimation

Abstract

99mTc is the most applied medical radioisotope in the world, especially for cancer diagnosis procedures. It is provided by 99Mo radioactive decay, which is one of the fission products from the uranium irradiation in nuclear reactors. At the main production plants, the 99Mo chemical processing may be lined up in several steps to separate it from other fission products according to the features of the used targets or the local requirements as well. In this work, two routes of 99Mo purification, MR1, and MR2, were purposed as an alternative to be set up in the Brazilian Multipurpose Reactor project (BMR). The MR1 route was performed by three chromatographic columns packed with Dowex 1x8 resin, Chelex resin, and alumina, respectively. The route MR2 was carried out also by chromatography applying two columns filled with Dowex 1x8 and alumina respectively, but including a sublimation process performed in a tubular oven under programmed conditions. The final yield for the MR1 route was 84.4 % and the overall time process was about 7 hours, whereas the MR2 route reached 75.3 % in 9 hours.

Downloads

Download data is not yet available.

Author Biographies

Marcos Oliveira Damasceno, Instituto de Pesquisas Energéticas e Nucleares - IPEN

Pesquisador Adjunto do Centro de Química e Meio Ambiente

Fernanda Marques Alves da Silva, Instituto de Pesquisas Energéticas e Nucleares - IPEN

Bolsista de programa de capacitação institucional CNPq no Centro de Química e Meio Ambiente -IPEN/CNEN

Jacinete Lima dos Santos, Instituto de Pesquisas Energéticas e Nucleares - IPEN

Bolsista de programa de capacitação institucional CNPq no Centro de Química e Meio Ambiente -IPEN/CNEN

Ricardo Rodrigues Dias, Instituto de Pesquisas Energéticas e Nucleares - IPEN

Tecnico Químico no Centro de Química e Meio Ambiente -IPEN/CNEN

Christina A. L. G. O. Forbicini, Instituto de Pesquisas Energéticas e Nucleares - IPEN

Pesquisadora Senior no Centro de Química e Meio Ambiente -IPEN/CNEN

References

SAHA, G. B. Fundamentals of nuclear pharmacy, 5 Ed. New York, N.Y.: Springer, 2003.

AHMAD, M.; VANDEGRIFT, G.; CRISTINI, P. Molybdenum-99 (99Mo): Past, Present and Future”. Science and Technology of Nuclear Installations, v. 2014, p. 1-3, 2014.

National Academies of Science, Engineering, and Medicine (USA). Opportunities and Ap-proaches for Supplying Molybdenum-99 and Associated Medical Isotopes to Global Markets: Proceedings of a Symposium. Washington, DC: The National Academies (2018).

SHITAKA, I.; IGUCHI, A. Production of 99Mo and its applications in nuclear medicine. Jour-nal of Radioanalytical and Nuclear Chemistry, v. 102, p. 533-550, 1986.

TAUHATA, L.; SALATI, I.; DIPRIZIO, R.; DIPRIZIO, M. A. R. R. Radioproteção e Dosi-metria: Fundamentos, 5 rev. Rio de Janeiro: IRD/CNEN, 2003.

AQUINO, R. A.; VIEIRA, F. M. M. Molibdênio-99, Crise e Oportunidade, Scientific Ameri-can, v. 98, p. 82, 2010.

PERROTA, J. A.; A. J. SOARES. RMB: The New Brazilian Multipurpose Research Reactor. Atomwirtschaft, v. 60 (1), p. 30-34, 2015.

VANDERWALT, T. N.; COETZEE, P. P. The isolation of 99Mo from fission material for use in the 99Mo/99mTc generator for medical use. Radiochimica Acta, v. 92, p. 251–257, 2004.

MUENZE, R.; BEYER, G. J.; ROSS, R.; WAGENER, G. NOVOTNY, D.; FRANKE, E. JE-HANGIR, M. PERVEZ, S.; MUSHTAQ, A. The fission-based 99Mo production process ROMOL-99 and its application to PINSTECH Islamabad. Science and Technology of Nuclear Installations, v. 2013, p. 1-9, 2013.

LEE, S. K.; BEYER, G.; LEE, J. S. Development of industrial-scale fission 99Mo production process using low enriched uranium target. Nuclear Engineering and Technology, v. 48, p. 613-623, 2016.

LAVINAS, T. Purificação do molibdênio-99, obtido a partir da fissão do urânio-235, utili-zando-se a resina Chelex-100. Msc Science IPEN-USP, São Paulo, 1998.

SAMEH, A.; ACHE, H. J. Production techniques for fission molybdenum-99. Radiochimica Acta, v. 41, p. 65-72, 1987.

BOYD, R. E. Technetium-99m generators: the available options. The International Journal of Applied Radiation and Isotopes, v. 33, p. 801-809, 1982.

ANKITA, R.; ABHISHEK, K. S.; PRADEEP, K.; CHARYULU, M. M.; TOMAR, B. S.; RAMAKUMAR, K. L. Studies on separation and purification of fission 99Mo from Neutron Activated Uranium Aluminum Alloy. Applied Radiation and Isotopes, v. 89, p.186-191, 2014.

Downloads

Published

2021-06-25

How to Cite

Oliveira Damasceno, M., Alves da Silva, F. M., dos Santos, J. L., Dias, R. R., & Forbicini, C. A. L. G. O. (2021). Study of new routes for purification of fission 99Mo. Brazilian Journal of Radiation Sciences, 9(2). https://doi.org/10.15392/bjrs.v9i2.1623

Issue

Section

Articles