Validation of the stamping method for CaSO4:RE + Teflon® pellets production
DOI:
https://doi.org/10.15392/bjrs.v3i1A.170Keywords:
Thermoluminescent Dosimeter, Thermoluminescent Dosimetry, Radiometry.Abstract
The IPEN method for the CaSO4:RE + Teflon® production, developed and patented at the Dosimetric Materials Laboratory – LMD/IPEN in the earlier 1980’s, [1] is highly time-demanding, so that the use of the stamping method, already widely industrially applied, would enhance the CaSO4:RE + Teflon® pellets production. Thus, validating the stamping method, by comparing the dosimetric properties of a batch of pellets produced by each method, became a must. The stamped batch presents the same mean non-irradiated signals either after sintering or annealing while IPEN batch mean non-irradiated signals vary in 23%. The mean TL signal after irradiation was about 50 nC, but the standard deviation varies from 20% to 33% for IPEN batch and keeps in 10% for the stamped batch. 24 h after the irradiation, the TL signal decreased to about 35 nC, with no differences in IPEN batch standard deviation and a decrease to 5% in stamped batch standard deviation, for the five performed essays. Calibration curves present a linear behavior over the entire studied dose range and the same coefficients for both methods, however, the uncertainties in the coefficients determined to the calibration curve obtained with stamped pellets are significantly smaller, leading to a more precise dose determination. This results show that the stamping method produces more homogeneous batches, with pellets that maintain the dosimetric characteristics of the detectors produced by IPEN method, in such a way that the stamping method can substitute with advantages the IPEN method in the CaSO4:RE + Teflon® dosimetric pellets production.
- Views: 90
Downloads
References
L.L. Campos, “Preparation of CaSO4:Dy TL single crystals”, Journal of Luminescence, v. 28, pp.481–483 (1983).
L.L. Campos, “Determination of TL parameters of CaSO4 produced at Instituto de Pesquisas Energéticas e Nucleares (IPEN)”, Applied Radiation and Isotopes, v. 39, pp.233–236 (1988).
M.S. Nogueira, L.L.Campos, “The angular dependence of CaSO4:Dy pellets for personal dose equivalent Hp (D) measurements”, Physics in Medicine and Biology, v. 39a, pp.384–385 (1994).
K.A.C. Daros, R.B. Medeiros, L.L. Campos, “TL response study of the CaSO4:Dy pellets with graphite for dosimetry in beta radiation and low energy photons fields”, Applied Radiation and Isotopes, v. 54, pp.957–960 (2001).
M.F.Lima, L.L.Campos, “Thermoluminescent CaSO4:Dy + Teflon® pellets for beta radiation detection”, Radiation Protection Dosimetry, v. 18, pp.95–97 (1987).
L.L. Campos, “Graphite mixed CaSO4:Dy TL dosemeter for beta radiation dosimetry”, Radiation Protection Dosimetry, v. 48, pp.205–207 (1993).
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2015 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/