Synthesis of Thulium-yttria Nanoparticles with EPR Response

Authors

  • Silas Santos Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN\SP
  • Orlando
  • Leticia

DOI:

https://doi.org/10.15392/bjrs.v10i2A.1801

Keywords:

yttria, thulium oxide, EPR, radiation dosimetry, ceramic processing

Abstract

Approaches to form new materials for radiation dosimetry are essential to enhance quality assurance and quality improvement practices based on radiation protection concept. The present work reports a hydrothermal synthesis based on a relative low temperature and pressure to form thulium-yttria nanoparticles with electron paramagnetic resonance response. Thulium-yttria nanoparticles were prepared and characterized by XRD, SEM, PCS, and EPR. According to results, the hydrothermal method provided thulium-yttria nanoparticles with cubic C-type structure, mean particle size (d50) less than 160nm, and EPR response. The EPR spectra of powders exhibited two resonance peaks p1 and p2 recorded at 350 and 160mT, respectively. The enhancement of the EPR response of yttria by the use of thulium as a dopant provide meaningful parameters to advance in the formation of new rare earth based materials for radiation dosimetry.

Downloads

Download data is not yet available.

References

Occupational Radiation Protection, no. GSG-7. Vienna: International Atomic Energy Agency, 2018.

Radiation Protection of the Public and the Environment, no. GSG-8. Vienna: International Atomic Energy AgencyInternational Atomic Energy Agency , 2018.

Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, no. GSR Part 3. Vienna: International Atomic Energy AgencyInternational Atomic Energy Agency, 2014.

E. Suvaci and E. B. T.-R. M. in M. S. and M. E. Özel, “Hydrothermal Synthesis,” Elsevier, 2020. DOI: https://doi.org/10.1016/B978-0-12-803581-8.12096-X

M. S. Medina, J. C. Bernardi, A. Zenatti, and M. T. Escote, “A new approach to obtain calcium cobalt oxide by microwave-assisted hydrothermal synthesis,” Ceram. Int., vol. 46, no. 2, pp. 1596–1600, 2020, doi: https://doi.org/10.1016/j.ceramint.2019.09.130. DOI: https://doi.org/10.1016/j.ceramint.2019.09.130

X. Yu, Z. Han, H. Tang, J. Xie, and X. Mi, “Investigating luminescence properties and energy transfer of Ca3(PO4)2: Dy3+/Eu3+ phosphor via hydrothermal synthesis,” Opt. Mater. (Amst)., vol. 106, p. 110009, 2020, doi: https://doi.org/10.1016/j.optmat.2020.110009. DOI: https://doi.org/10.1016/j.optmat.2020.110009

S. H. Daryan, A. Khavandi, and J. Javadpour, “Surface engineered hollow hydroxyapatite microspheres: Hydrothermal synthesis and growth mechanisms,” Solid State Sci., vol. 106, p. 106301, 2020, doi: https://doi.org/10.1016/j.solidstatesciences.2020.106301. DOI: https://doi.org/10.1016/j.solidstatesciences.2020.106301

M. L. Hancock et al., “The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis,” Appl. Surf. Sci., vol. 535, p. 147681, 2021, doi: https://doi.org/10.1016/j.apsusc.2020.147681. DOI: https://doi.org/10.1016/j.apsusc.2020.147681

H. Wu et al., “Cellulose nanofiber assisted hydrothermal synthesis of Ni-rich cathode materials with high binding particles for lithium-ion batteries,” J. Alloys Compd., vol. 829, p. 154571, 2020, doi: https://doi.org/10.1016/j.jallcom.2020.154571. DOI: https://doi.org/10.1016/j.jallcom.2020.154571

N. J. Ismail et al., “Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A,” J. Water Process Eng., vol. 37, p. 101504, Oct. 2020, doi: 10.1016/j.jwpe.2020.101504. DOI: https://doi.org/10.1016/j.jwpe.2020.101504

U. S. G. S. Department of the Interior, U. S. G. S. Department of the Interior, and U. S. G. S. Department of the Interior, “A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals,” United States, 2018. [Online]. Available: https://www.usgs.gov/news/interior-releases-2018-s-final-list-35-minerals-deemed-critical-us-national-security-and.

T. E. Union and O. of the E. Union, “Report on critical raw materials and the circular economy ,” The European Union, 2018. doi: 10.2873/167813.

N. A. Oliveira, A. G. Bispo-Jr, G. M. M. Shinohara, S. A. M. Lima, and A. M. Pires, “The influence of the complexing agent on the luminescence of multicolor-emitting Y2O3:Eu3+,Er3+,Yb3+ phosphors obtained by the Pechini’s method,” Mater. Chem. Phys., vol. 257, p. 123840, Jan. 2021, doi: 10.1016/j.matchemphys.2020.123840. DOI: https://doi.org/10.1016/j.matchemphys.2020.123840

S. C. Santos, O. Rodrigues, and L. L. Campos, “Colloidal processing of thulium-yttria microceramics,” J. Phys. Chem. Solids, vol. 161, p. 110420, 2022, doi: https://doi.org/10.1016/j.jpcs.2021.110420. DOI: https://doi.org/10.1016/j.jpcs.2021.110420

W. Tscharnuter, Photon Correlation Spectroscopy in Particle Sizing, 1st ed. United States of America: John Wiley & Sons Ltd, 2000. DOI: https://doi.org/10.1002/9780470027318.a1512

A. L. Patterson, “The Scherrer Formula for X-Ray Particle Size Determination,” Phys. Rev., vol. 56, no. 10, pp. 978–982, Nov. 1939, doi: 10.1103/PhysRev.56.978. DOI: https://doi.org/10.1103/PhysRev.56.978

G. R. Eaton and S. S. Eaton, “2.03 - Electron Paramagnetic Resonance Spectroscopy,” E. C. Constable, G. Parkin, and L. B. T.-C. C. C. I. I. I. Que Jr, Eds. Oxford: Elsevier, 2021, pp. 44–59. DOI: https://doi.org/10.1016/B978-0-12-409547-2.14621-9

Downloads

Published

2022-07-21

How to Cite

Santos, S., Rodrigues, O., & Lucente Campos Rodrigues, L. (2022). Synthesis of Thulium-yttria Nanoparticles with EPR Response. Brazilian Journal of Radiation Sciences, 10(2A (Suppl.). https://doi.org/10.15392/bjrs.v10i2A.1801