Simulation of steady-state and transient loss of cooling accident of a channel in a reactor plate-type fuel element
DOI:
https://doi.org/10.15392/2319-0612.2022.1829Keywords:
Transients, CFD, Cooling, Phenomena, ReactorAbstract
The suitable cooling of fuel elements in a nuclear reactor is an important requirement that must be met to avoid that the fuel temperature rises above the safety limits according to the reactor design. During the reactor operation, there are transients that could lead to a temperature that overcomes these limits, such as those related to the cooling system. The CFD codes are tools that could aid in the understand of the phenomenon during such transients, allowing to access details of the flow that are not possible, or are possible only with limitations, by using other kind of codes or experiments. In the present work, the results obtained using ANSYS-CFXÒ code for the IEA-R1 reactor during a steady state and transient of slow loss of cooling accident event are presented. The results obtained shown a good agreement with experimental data reported and works that used this reactor as case of study. These results are part of a research in which the main objective is to simulate the flow of the coolant in the fuel element channels during transients. These results would support an initial analysis of the flow during the transition from forced to natural convection that occurs when the coolant flow falls below a settled value and the valve on the bottom of the core opens by gravity, aiming to understand better phenomena involved and the limitations of the models available in the ANSYS-CFXÒ code.
- Views: 79
- PDF Downloads: 94
Downloads
References
UMBEHAUN, P.E.; Development of an instrumented fuel element for the IEA-R1 research reactor. PhD Thesis, IPEN, Brazil, 2019.
UMBEHAUN, P.E.; Methodology for thermal-hydraulic analysis of pool type research reactors with plate type fuel. Master Thesis, IPEN, Brazil, 2000.
SCURO, N. L.; Numerical simulation of a slow loss of coolant accident in a research nuclear reactor. Master Thesis, IPEN, Brazil, 2019.
UMBEHAUN, P.E.; TORRES, W.M.; SOUZA, J.A.B.; YAMAGUCHI, M.; SILVA, A.T.; MESQUITA, R.N., SCURO, N.L.; ANDRADE, D.A.; Thermal hydraulic analysis improvement for the IEA-R1 research reactor and fuel assembly design modification. World Journal of Nuclear Science and Technology, v.8, 54-69, 2018. DOI: https://doi.org/10.4236/wjnst.2018.82006
ALMACHI, J.C.; ESPINOZA, V.S.; IMKE, U.; Extension and validation of the SubChanFlow code for the thermos-hydraulic analysis of MTR cores with plate-type fuel assemblies. Nuclear Engineering and Design, v.379, 111221, 2021. DOI: https://doi.org/10.1016/j.nucengdes.2021.111221
SANTOS, M.M.; Structural evaluation of a plate type fuel element for a compact nuclear reactor. Master Thesis, IPEN, Brazil, 2019.
DURAZZO, M.; UMBEHAUN, P.E.; TORRES, W.M.; SOUZA, J.A.B.; SILVA, D.G.; ANDRADE, D.A.; Procedures for manufacturing an instrumented nuclear fuel element. Progress in Nuclear Energy, v.113, 166-174, 2019. DOI: https://doi.org/10.1016/j.pnucene.2019.01.021
HAINOUN, A.; DOVAL, A.; UMBEHAUN, P.; CHARZIDAKIS, S.; GHAZI, N.; PARK, S.; MLADIN, M.; SHOKR, A.; International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor. Nuclear Engineering and Design, v.280, 233-250, 2014. DOI: https://doi.org/10.1016/j.nucengdes.2014.06.041
MAPRELIAN, E.; TORRES, W.M.; JUNIOR, A.B.; UMBEHAUN, P.E.; BERRETTA, J.R.; SABUNDJIAN, G.; Total and partial loss of coolant experiments in an instrumented fuel assembly of IEA-R1 research reactor. Nuclear Engineering and Design, v.363, 110610, 2020. DOI: https://doi.org/10.1016/j.nucengdes.2020.110610
NISHIYAMA, P.J.B.O.; Neutronic and Thermal-hydraulic evaluation of a device for irradiation of a LEU target of UAlx-Al for production of 99Mo in the IEA-R1 reactor. Master Thesis, IPEN, Brazil, 2012.
DOMINGOS, D.B.; Neutronic and Thermal-hydraulic evaluation of devices for irradiation of LEU targets of UAlx-Al and U-Ni for production of 99Mo in the reactors IEA-R1 and RMB. PhD Thesis, IPEN, Brazil, 2014.
ANSYS User Guide Manual. CFX. Release 20.1. Canonsburg, PA, 2020.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/