Degradation and Toxicity of Amoxicillin After Electron Beam Irradiation
DOI:
https://doi.org/10.15392/2319-0612.2022.1894Keywords:
Electron Beam Irradiation, Antibiotic, ToxicityAbstract
A recent and growing concern in environmental studies is the presence of antibiotics in wastewater, which contributes to antimicrobial resistance building. Amoxicillin, according to the World Health Organization, is one of the most consumed antibiotics worldwide, for being a first line therapy for common infections. Among several drug degradation methodologies, electron beam irradiation (EBI) is presented as an efficient and green treatment. This work presents data on amoxicillin degradation via EBI. Ecotoxicity essays were performed employing Vibrio fischeri, carbon removal efficiency was evaluated by TOC and degradation rate by LC/MS-MS. Chromatographic results indicate a 97.9% drug concentration reduction after 0.75 kGy; TOC results indicate 10% carbon removal at 3.0 kGy; toxicity assays indicate 80% in removal of toxicity at 0.75 kGy and a decrease in efficiency with higher doses. In conclusion, results indicate the 0.75 kGy as most effective for drug removal employing EBI.
- Views: 184
- PDF Downloads: 119
Downloads
References
GITHINJI, L. J. M.; MUSEY, M. K.; ANKUMAH, R. O. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut, v. 219, p. 191-201, 2011. DOI: https://doi.org/10.1007/s11270-010-0697-1
TROJANOWICZ, M.; BOJANOWSKA-CZAJKA, A.; CAPODAGLIO, A. G. Can radiation chemistry supply a high efficient AO(R)P process for organics removal from drinking and waste water? A review. Eviron Sci Pollut Res, v. 24, p. 20187-20208, 2017. DOI: https://doi.org/10.1007/s11356-017-9836-1
ZHU, F.; PAN, J.; ZOU, Q.; WU, M.; WANG, H.; XU., G. Electron beam irradiation of typical sulfonamide antibiotics in the aquatic environment: kinetics, removal mechanisms, degradation products and toxicity assessment. Chemosphere, v. 274, p. 129713, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.129713
TAKACS, E.; WANG, J.; CHU, L.; TOTH, T.; KOVACS, K.; BEZSENYI, A.; SZABO, L.; HOMLOK, R.; WOJNAROVITS. L. Elimination of oxacillin, its toxicity and antibacterial activity by using ionizing radiation. Chemosphere, v. 286, p. 131467, 2021. DOI: https://doi.org/10.1016/j.chemosphere.2021.131467
TEGZE, A.; SAGI, G.; KOVACS, K.; HOMLOK, R.; TOTH, T.; MOHACSI-FARKAS, C.; WOJNAROVITS, L.; TAKACS, E. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products. Radiat Phys Chem, v. 147, p. 101-105, 2018. DOI: https://doi.org/10.1016/j.radphyschem.2018.02.015
TOMINAGA, F. K.; SILVA, T. T.; BOIANI, N. F.; JESUS, J. M. S.; TEIXEIRA, A. C. S. C.; BORRELY, S. I. Is ionizing radiation effective in removing pharmaceuticals from wastewater? Eviron Sci Pollut Res, v. 28, p. 23975-23983, 2021. DOI: https://doi.org/10.1007/s11356-020-11718-8
WANG, J.; CHU, L. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiat Phys Chem, v. 125, p. 56-64, 2016. DOI: https://doi.org/10.1016/j.radphyschem.2016.03.012
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/