How does radioisotope thermoelectric generator (RTG) work

Authors

  • Carla Daruich de Souza IPEN https://orcid.org/0000-0003-1335-8864
  • Jong Bum Kim Korea Atomic Energy Research Institute
  • Jin Joo Kim Korea Atomic Energy Research Institute
  • Jin Kim Korea Atomic Energy Research Institute
  • Wanook Ji Korea Atomic Energy Research Institute
  • Kwang Jae Son Korea Atomic Energy Research Institute
  • Sang Mu Choi Korea Atomic Energy Research Institute
  • Gu Jin Kang Korea Atomic Energy Research Institute
  • Jin Tae Hong Korea Atomic Energy Research Institute

DOI:

https://doi.org/10.15392/bjrs.v10i2.2015

Keywords:

radioisotope thermoelectric generator, RTG, nuclear battery

Abstract

Demand for energy has increasing rapidly in the last decade. In 2021 an increase in 5% was observed. Half of this demand was covered by fossil fuels, increasing CO2 emissions to record levels. With the need for new reliable steady supply sources to be used in places where maintenance is difficult, Radioisotope Thermoelectric Generators (RTG) have been given renewed attention in the past 10 years. RTGs uses radioactive decay to generate electricity. This work presents in a simple manner, the basics of RTG operation, the requirements for construction, and is followed by an example developed at KAERI. Basic Radiation Physics Concepts, RTG configuration requirements, Thermoelectric effect and materials, and calculations for electric power were presented.

Downloads

Download data is not yet available.

Author Biography

Carla Daruich de Souza, IPEN

Post Doctorate

in IPEN

References

INTERNATIONAL AGENCY AGENCY. Global electricity demand is growing faster than renewables, driving strong increase in generation from fossil fuels. https://www.iea.org/news/global-electricity-demand-is-growing-faster-than-renewables-driving-strong-increase-in-generation-from-fossil-fuels,2021 Last accessed: Feb. 15, 2022.

PRELAS, M. A.; WEAVER, C. L.; WATERMANN, M. L.; LUKOSI, E. D.; SCHOTT, R. J.; WISNIEWSKI, D. A. A Review of Nuclear Batteries. Progress in Nuclear Energy, v. 75, p. 117-148, 2014. DOI: https://doi.org/10.1016/j.pnucene.2014.04.007

PRELAS, M. A.; BORAAS, M.; AGUILAR, F. D. L. T.; SEELIG, J.-D.; TCHOUASO, M. T.; WISNIEWSKI, D. Nuclear Batteries and Radioisotopes. 1st ed. Switzerland: Springer International Publishing, 2016. DOI: https://doi.org/10.1007/978-3-319-41724-0_1

LANGE, R. G.; CARROLL, W. P. Review of recent advances of radioisotope power systems. Energy Conversion and Management, v. 49, n. 3, p. 393-401, 2008. DOI: https://doi.org/10.1016/j.enconman.2007.10.028

PARSONNET, V.; DRILLER, J.; COOK, D.; RIZVI, S. A. Thirty-one years of clinical experience with "nuclear-powered" pacemakers. Pacing Clin Electrophysiol, v. 29, n. 2, p. 195-200, 2006. DOI: https://doi.org/10.1111/j.1540-8159.2006.00317.x

HUFFMAN, F. N.; MIGLIORE, J. J.; ROBINSON, W. J.; NORMAN, J. C. RADIOISOTOPE POWERED CARDIAC PACEMAKERS. Cardiovascular diseases, v. 1, n. 1, p. 52-60, 1974. DOI: https://doi.org/10.1109/TNS.1974.4327537

SNEVE, M. K. Remote Control. Int. Atomic Energy Agency Bull, v. 48, n. 1, p. 42, 2006.

SCHWARTZ, L. I.; SHURE, H. J. Survey of electric power plants for space applications. Fifty-Eight National Meeting of the American Institute of Chemical Engineers, 1965, Philadelphia, Pennsylvania, USA.

CATALDO, R. L.; BENNET, G. L. U.S. Space radioisotope power systems and applications: past, present and future. Radioisotopes – Applications in Physical Sciences, v. 22, 2010.

KAPLAN, I. Física nuclear. 2nd ed. Rio de Janeiro, RJ: Guanabara Dois, 1978.

AMBROSI, R. M.; WILLIAMS, H. R.; SAMARA-RATNA, P.; BANNISTER, N. P.; VERNON, D.; CRAWFORD, T.; BICKNELL, C.; JORDEN, A.; SLADE, R.; DEACON, T.; KONIG, J.; JAEGLE, M.; STEPHENSON, K. Development And Testing Of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs And Breadboard System. Nuclear and Emerging Technologies for Space. . Cleveland, OH, USA 2012.

O’BRIEN, R. C.; AMBROSI, R. M.; BANNISTER, N. P.; HOWE, S. D.; ATKINSON, H. V. Safe radioisotope thermoelectric generators and heat sources for space applications. Journal of Nuclear Materials, v. 377, n. 3, p. 506-521, 2008. DOI: https://doi.org/10.1016/j.jnucmat.2008.04.009

OTTING, B.; GARD, L.; HAMMEL, T.; BENNETT, R. MMRTG – Power for the Mars Science Laboratory. http://anstd.ans.org/wp-content/uploads/2015/07/1027.pdf,2019 Last accessed: May 15, 2019.

DARUICH DE SOUZA, C.; KIM, J. B.; KIM, J. J.; KIM, J.; JI, W.; SON, K. J.; CHOI, S. M.; KANG, G. J.; HONG, J. T. The basics of radiation damage in crystalline silicon networks by NIEL. Brazilian Journal of Radiation Sciences, v. 9, n. 3, p. 14, 2021. DOI: https://doi.org/10.15392/bjrs.v9i3.1707

IAEA - NUCLEAR DATA SECTION. LiveChart of Nuclides. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html,2021 Last accessed: May 17, 2021.

LEIFIPHYSIK; STIFTUNG, J. H. Nuklidkarte. https://www.leifiphysik.de/kern-teilchenphysik/radioaktivitaet-einfuehrung/grundwissen/nuklidkarte,2021 Last accessed: Nov. 12, 2021.

DARUICH DE SOUZA, C.; KIM, J. B.; KIM, J. J.; KIM, J.; JI, W.; SON, K. J.; CHOI, S. M.; KANG, G. J.; HONG, J. T. The Basics of Betavoltaic Nuclear Batteries. International Journal of Current Advanced Research, v. 10, n. 11, p. 12, 2021.

ASHBY, M. Materials Selection in Mechanical Design. 5th ed. . Oxford, UK: Butterworth-Heinemann, 2016.

HOWELL, J. R.; MENGUC, M. P.; SIEGEL, R. Thermal Radiation Heat Transfer. 5th ed. . Florida, USA: CRC Press, 2010. DOI: https://doi.org/10.1201/9781439894552

HSIEH, H.-C.; WANG, C.-H.; LIN, W.-C.; CHAKROBORTY, S.; LEE, T.-H.; CHU, H.-S.; WU, A. T. Electroless Co-P diffusion barrier for n-PbTe thermoelectric material. Journal of Alloys and Compounds, v. 728, p. 1023-1029, 2017. DOI: https://doi.org/10.1016/j.jallcom.2017.09.051

INTERNATIONAL ATOMIC NUCLEAR AGENCY. Live Chart of Nuclides: nuclear structure and decay data. http://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html,2019 Last accessed: 26 feb., 2020.

DARUICH DE SOUZA, C. The basics of radiation damage. Korean atomic Energy Research Institute. Daejeon. 2021

HONG, J.; SON, K.-J.; KIM, J.-B.; KIM, J.-J. Study on the Development of a Small ETG for the Korean Launch Vehicle’s Low Orbit Test. Nuclear Technology, v. 206, n. 8, p. 1213-1223, 2020. DOI: https://doi.org/10.1080/00295450.2019.1682899

PESSOA, E. F.; COUTINHO , F. A. B.; SALA, O. Introdução à Física Nuclear. 1st ed. São Paulo: McGraw-Hill - Brasil, 1978.

MEYERHOF, W. E. Elements of Nuclear Physics. New York: McGraw-Hill Book Company, 1989.

Downloads

Published

2022-06-13

How to Cite

Daruich de Souza, C., Kim, J. B., Kim, J. J., Kim, J., Ji, W., Son, K. J. ., Choi, S. M., Kang, G. J., & Hong, J. T. (2022). How does radioisotope thermoelectric generator (RTG) work. Brazilian Journal of Radiation Sciences, 10(2). https://doi.org/10.15392/bjrs.v10i2.2015

Issue

Section

Articles

Most read articles by the same author(s)