Comparing the monochromatic TL response of a high sensitivity natural quartz irradiated with β and γ rays
DOI:
https://doi.org/10.15392/bjrs.v10i2A.2026Keywords:
thermoluminescence, quartz, sensitization, dose-rate, deep trapAbstract
This study investigates the effect of the dose-rate in the thermoluminescent glow curves of a single crystal of quartz. The samples were sensitized by the γ radiation combined with the heat-treatments. The glow curves were registered in zeroed (unsensitized) and sensitized conditions using an optical filter centered in violet spectral region. Tens mGy test doses were administered with one β (90Sr/90Y) source and two γ radiation sources (60Co and 137Cs). The TL curves were deconvoluted using a first-order kinetic model. Differences in the glow curves and trapping parameters were observed between zeroed and sensitized samples. Differences were found in the TL curves comparing the three radiation sources. The principal variation is the remarkable increase in the TL signal above 350 °C, which is observed only in sensitized samples with the minor dose-rate source (137Cs). This signal seems to be associated with deep trapping states. The intensities of the components defining the first peak and the high temperature signal show a dependence on the dose-rate. The dose-rate dependence of the first-peak components is explained by the competing effects that may take place during the excitation stage. The components that fitted the sensitized peak (260 oC) do not exhibit a clear dependence on the dose-rate of radiation source.
- Views: 198
- PDF Downloads: 123
Downloads
References
PREUSSER, F.; DEGERING, D.; FUCHS, M.; HILGERS, A.; KADEREIT, A.; KLASEN, N.; KRBETSCHEK, M.; RICHTER, D.; SPENCER, J. Q. G. Luminescence dating: basics, methods and applications. Eiszeitalter und Gegenwart Quaternary Science Journal, v. 57, n. 1/2, p. 95–149, 2008. Available at: https://doi.org/10.3285/eg.57.1-2.5 DOI: https://doi.org/10.3285/eg.57.1-2.5
WINTLE, A. G.; MURRAY, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, v. 41, n. 4, p. 369–391, 2006. Available at: https://doi.org/10.1016/j.radmeas.2005.11.001 DOI: https://doi.org/10.1016/j.radmeas.2005.11.001
FLEMING, S. J. The pre-dose technique: a new thermoluminescent dating method. Archaeometry, v. 15, n. 1, p. 13–30, 1973. DOI: https://doi.org/10.1111/j.1475-4754.1973.tb00074.x
GUÉRIN, G.; VALLADAS, H. Cross-calibration between beta and gamma sources using quartz OSL: Consequences of the use of the SAR protocol in optical dating. Radiation Measurements, v. 68, p. 31–37, 2014. Available at: https://doi.org/10.1016/j.radmeas.2014.06.010 DOI: https://doi.org/10.1016/j.radmeas.2014.06.010
GROOM, P. J.; DURRANI, S. A.; KHAZAL, K. A. R.; MCKEEVER, S. W. S. The dose rate dependence of thermoluminescence response and sentivity in quartz. Eur. PACT J., v. 2, p. 200–10, 1978.
HOROWITZ, Y.; OSTER, L.; ELIYAHU, I. Review of dose-rate effects in the thermoluminescence of LiF:Mg,Ti (HARSHAW). Radiation Protection Dosimetry, v. 179, n. 2, p. 184–188, 2018. Available at: https://doi.org/10.1093/rpd/ncx248 DOI: https://doi.org/10.1093/rpd/ncx248
CHEN, R.; LEUNG, P. L. A model for dose-rate dependence of thermoluminescence intensity. Journal of Physics D: Applied Physics, v. 33, n. 7, p. 846–850, 2000. Available at: https://doi.org/10.1088/0022-3727/33/7/315 DOI: https://doi.org/10.1088/0022-3727/33/7/315
VALLADAS, G.; FERREIRA, J. On the dose-rate dependence of the thermoluminescence response of quartz. Nuclear Instruments and Methods, v. 175, n. 1, p. 216–218, 1980. Available at: https://doi.org/10.1016/0029-554X(80)90310-9 DOI: https://doi.org/10.1016/0029-554X(80)90310-9
CHEN, R.; PAGONIS, V.; LAWLESS, J. L. Time and dose-rate dependence of TL and OSL due to competition between excitation and fading. Radiation Measurements, v. 82, p. 115–121, 2015. Available at: https://doi.org/10.1016/j.radmeas.2015.09.006 DOI: https://doi.org/10.1016/j.radmeas.2015.09.006
KVASNIČKA, J. TL Response dependence on the dose rate and its consequences. The International Journal Of Applied Radiation And Isotopes, v. 34, n. 4, p. 713–715, 1983. Available at: https://doi.org/10.1016/0020-708X(83)90248-X DOI: https://doi.org/10.1016/0020-708X(83)90248-X
FERREIRA DE SOUZA, L. B.; GUZZO, P. L.; KHOURY, H. J. OSL and photo-transferred TL of quartz single crystals sensitized by high-dose of gamma-radiation and moderate heat-treatments. Applied Radiation and Isotopes, v. 94, p. 93–100, 2014. Available at: https://doi.org/10.1016/j.apradiso.2014.07.017 DOI: https://doi.org/10.1016/j.apradiso.2014.07.017
FERREIRA DE SOUZA, L. B.; GUZZO, P. L.; KHOURY, H. J. Correlating the TL response of γ-irradiated natural quartz to aluminum and hydroxyl point defects. Journal of Luminescence, v. 130, n. 8, p. 1551–1556, 2010. Available at: https://doi.org/10.1016/j.jlumin.2010.03.028 DOI: https://doi.org/10.1016/j.jlumin.2010.03.028
GUZZO, P. L.; SOUZA, L. B. F.; KHOURY, H. J. Kinetic analysis of the 300 °C TL peak in Solonópole natural quartz sensitized by heat and gamma radiation. Radiation Measurements, v. 46, n. 12, p. 1421–1425, 2011. Available at: https://doi.org/10.1016/j.radmeas.2011.02.024 DOI: https://doi.org/10.1016/j.radmeas.2011.02.024
GUZZO, P. L.; FERREIRA DE SOUZA, L. B.; BARROS, V. S. M.; KHOURY, H. J. Spectroscopic account of the point defects related to the sensitization of TL peaks beyond 220 °C in natural quartz. Journal of Luminescence, v. 188, p. 118–128, 2017. Available at: https://doi.org/10.1016/j.jlumin.2017.04.009 DOI: https://doi.org/10.1016/j.jlumin.2017.04.009
KHOURY, H. J.; GUZZO, P. L.; SOUZA, L. B. F.; FARIAS, T. M. B.; WATANABE, S. TL dosimetry of natural quartz sensitized by heat-treatment and high dose irradiation. Radiation Measurements, v. 43, n. 2–6, p. 487–491, 2008. Available at: https://doi.org/10.1016/j.radmeas.2008.01.028 DOI: https://doi.org/10.1016/j.radmeas.2008.01.028
CAICEDO MATEUS, F. D.; ASFORA, V. K.; GUZZO, P. L.; BARROS, V. S. M. Investigation of the spectrally resolved TL signals of natural quartz single crystals sensitized by high-dose of gamma-radiation and moderate heat-treatments. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, v. 486, p. 37–47, 2021. Available at: https://doi.org/10.1016/j.nimb.2020.11.001 DOI: https://doi.org/10.1016/j.nimb.2020.11.001
MURSHED, H. Fundamentals of Radiation Oncology. Third ed. Elsevier, 2019. E-book. Available at: https://doi.org/10.1016/C2018-0-04417-5 DOI: https://doi.org/10.1016/B978-0-12-814128-1.00003-9
PUCHALSKA, M.; BILSKI, P. GlowFit—a new tool for thermoluminescence glow-curve deconvolution. Radiation Measurements, v. 41, n. 6, p. 659–664, 2006. Available at: https://doi.org/10.1016/j.radmeas.2006.03.008 DOI: https://doi.org/10.1016/j.radmeas.2006.03.008
BAILEY, R. M. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements, v. 33, n. 1, p. 17–45, 2001. Available at: https://doi.org/10.1016/S1350-4487(00)00100-1 DOI: https://doi.org/10.1016/S1350-4487(00)00100-1
PETROV, S. A.; BAILIFF, I. K. The ‘110 °C’ TL peak in synthetic quartz. Radiation Measurements, v. 24, n. 4, p. 519–523, 1995. Available at: https://doi.org/10.1016/1350-4487(95)00002-V DOI: https://doi.org/10.1016/1350-4487(95)00002-V
SUNTA, C. M.; YOSHIMURA, E. M.; OKUNO, E. Supralinearity and sensitization of thermoluminescence. I. A theoretical treatment based on an interactive trap system. Journal of Physics D: Applied Physics, v. 27, n. 4, p. 852, 1994. Available at: https://doi.org/10.1088/0022-3727/27/4/027 DOI: https://doi.org/10.1088/0022-3727/27/4/027
BULL, R. K.; MCKEEVER, S. W. S.; CHEN, R.; MATHUR, V. K.; RHODES, J. F.; BROWN, M. D. Thermoluminescence kinetics for multipeak glow curves produced by the release of electrons and holes. Journal of Physics D: Applied Physics, v. 19, n. 7, p. 1321–1334, 1986. Available at: https://doi.org/10.1088/0022-3727/19/7/021 DOI: https://doi.org/10.1088/0022-3727/19/7/021
KITIS, G. TL glow-curve deconvolution functions for various kinetic orders and continuous trap distribution: Acceptance criteria for E and s values. Journal of Radioanalytical and Nuclear Chemistry, v. 247, n. 3, p. 697–703, 2001. Available at: https://doi.org/https://doi.org/10.1023/A:1010688122988 DOI: https://doi.org/10.1023/A:1010688122988
YAZICI, A. N.; TOPAKSU, M. The analysis of thermoluminescence glow peaks of unannealed synthetic quartz. Journal of Physics D: Applied Physics, v. 36, n. 6, p. 620–627, 2003. Available at: https://doi.org/10.1088/0022-3727/36/6/303 DOI: https://doi.org/10.1088/0022-3727/36/6/303
BALIAN, H. G.; EDDY, N. W. Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, v. 145, n. 2, p. 389–395, 1977. Available at: https://doi.org/10.1016/0029-554X(77)90437-2 DOI: https://doi.org/10.1016/0029-554X(77)90437-2
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/