Dosimetric assessment and secondary cancer risk in breast radiotherapy: a Monte Carlo approach

Authors

  • Mirko Salomón Alva-Sánchez Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)/ Departamento de Ciências Exatas e Sociais Aplicados, 90050-170, Porto Alegre,Rio Grande do Sul, Brasil.
  • Giulia Rita de Souza Faés Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre,Rio Grande do Sul, Brasil.
  • William de Souza Santos Universidade Federal de Uberlândia (UFU)/ Instituto de Física, 38.400-902, Uberlândia, Minas Gerais,Brasil
  • Thatiane Alves Pianoschi Alva Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)/ Departamento de Ciências Exatas e Sociais Aplicados, 90050-170, Porto Alegre,Rio Grande do Sul, Brasil.

DOI:

https://doi.org/10.15392/bjrs.v10i3.2064

Keywords:

Breast cancer, radiotherapy, dosimetry, anthropomorphic simulator, Monte Carlo

Abstract

To calculate the risk of secondary cancer induction resulting from this dose through a Monte Carlo simulation code and voxel-based anthropomorphic phantom to determine the radiation dose in organs and/or tissues with dosimetric importance and the effect of using static MLC in the 3D-CRT technique. In this work, a radiotherapy treatment of breast cancer was simulated using the radiation transport code MCNPX 2.7.0 and the adult anthropomorphic simulator FSTA_H50_M50. The absorbed doses for a set of organs with dosimetric importance were determined. A LINAC Varian 2100C device operated with two techniques was simulated: 2D with open field (OF) and 3D-conformational (3D-CRT), the latter with the use of a multilayer collimator (MLC) of the breast, both acting with 6 MV energy. The highest values of absorbed dose were obtained for the ipsilateral lung (7.22 Gy (3D-CRT) and 8.49 Gy (OF)) and the contralateral breast (6.29 Gy (3D-CRT) and 6.56 Gy (OF)), generating for these organs the greatest risks of secondary cancer induction. With the OF technique, due to the non-collimation of the beam, there was an increase in the absorbed dose in all organs compared to 3D-CRT, thus evidencing a more effective treatment with the 3D-CRT technique, improving both homogeneity and conformity with the dose absorbed in the target organ.

 

Downloads

Download data is not yet available.

Author Biography

Mirko Salomón Alva-Sánchez, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA)/ Departamento de Ciências Exatas e Sociais Aplicados, 90050-170, Porto Alegre,Rio Grande do Sul, Brasil.

Department of Exact Science  and Applied Social 

References

OLIVEIRA, M. M. d .; MALTA, D. C .; GUAUCHE, H .; MOURA, L. d .; SILVA, G. A. Estimated number of people diagnosed with cancer in Brazil: data from the national health survey, 2013. Brazilian Journal of Epidemiology, SciELO Public Health, v. 18, p. 146-157, 2015. DOI: https://doi.org/10.1590/1980-5497201500060013

INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Estimate 2020: incidence of cancer in Brazil. 2020. Available in: https: //www.inca.gov.br/publicacoes/livros/estimativa-2020-incidencia-de-cancer-no-brasil. Access in: 02 out. 2020 [in Portuguese].

INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Cancer statistics. 2020. Available in: https: //www.inca.gov.br/numeros-de-cancer. Access in: 10 out. 2020 [in Portuguese].

INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Inca launches estimates of new cases of cancer for the 2020-2022.2020 period. Available in: https: //antigo.saude.gov.br/noticias/agencia-saude/46287-inca-lanca-estimativas-de-casos-novos- de-cancer-for-the-triennial-2020-2022. Access in: Oct 05 2020 [in Portuguese].

NASCIMENTO FILHO, A. C. S .; NOGUEIRA, S. Á. R .; PEREIRA, H. K. A .; PINHEIRO, S. L .; PINHEIRO JUNIOR, R. F. F. Molecular mechanisms of metformin as a therapeutic agent in the treatment of breast cancer. ID on Line REVISTA DE PSICOLOGIA, 12 (40), 9.2018. https://doi.org/10.14295/idonline.v12i40.1062 DOI: https://doi.org/10.14295/idonline.v12i40.1062

INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Breast cancer. 2020. Available in: https: //www.inca.gov.br/tipos-de-cancer/cancer-de-mama. Access in: 10 out. 2020 [in Portuguese].

GHDX 2017 Brazil Mortality Information System (SIM). 2018. Available in: http: //ghdx.healthdata.org/series/brazil-mortality-information-system-sim. Access in: 20 sep. 2020 [in Portuguese].

ARRUDA, G. A. do N. Analysis of the compliance index and the homogeneity index in radiotherapy plans: comparison between IMRT, 3D-CRT techniques. 56. 2020. https://repositorio.unesp.br/handle/11449/191432

MENDES, M. A. Dosimetric Analysis of Organs Involved in Radiotherapy Treatment of the Prostate. 2019. https://repositorio.ufmg.br/handle/1843/RAOA-BCZJBV

CHIMIN, F. Analysis of the Complication Parameters in Normal Tissues (NTCP) in Computerized Planning Applied to Radiotherapy of Prostate Tumors.2020.

SANDRINI, E. S. Analysis of the peculiarities of the treatment of lung c ncer with stereotaxic radiotherapy using modulated volumetric arc and beam without a finder filter (Federal University of Rio de Janeiro). 2019.

GONZALEZ, A. B. D .; CURTIS, R. E .; GILBERT, E .; BERG, C. D .; SMITH, S. A .; STOVALL, M .; RON, E. Second solid cancers after radiotherapy for breast cancer in seer cancer registries. British journal of cancer, Nature Publishing Group, v. 102, n. 1, p. 220–226, 2010. DOI: https://doi.org/10.1038/sj.bjc.6605435

STOVALL, M .; SMITH, S. A .; LANGHOLZ, B. M .; JR, J. D. C .; SHORE, R. E .; ANDERSSON, M .; BUCHHOLZ, T. A .; CAPANU, M .; BERNSTEIN, L .; LYNCH, C. F .; MALONE, K. E .; ANTON-CULVER, H .; HAILE, R. W .; ROSENSTEIN, B. S .; REINER, A. S .; THOMAS, D. C .; BERNSTEIN, J. L. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the we care study. International Journal of Radiation Oncology * Biology * Physics, Elsevier, v. 72, n. 4, p. 1021–1030, 2008. DOI: https://doi.org/10.1016/j.ijrobp.2008.02.040

HUANG, J .; MACKILLOP, W. J. Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer, Wiley Online Library, v. 92, n. 1, p. 172–180, 2001. DOI: https://doi.org/10.1002/1097-0142(20010701)92:1<172::AID-CNCR1306>3.0.CO;2-K

KIROVA, Y. M .; RYCKE, Y. de; GAMBOTTI, L .; PIERGA, J. Y .; ASSELAIN, B .; FOURQUET, A. Second malignancies after breast cancer: the impact of different treatment modalities. British journal of cancer, Nature Publishing Group, v. 98, n. 5, p. 870–874, 2008. DOI: https://doi.org/10.1038/sj.bjc.6604241

PELOWITZ, D. B. MCNPX User’s Manual, version 2.7.0. Report LA-CP-11-00438. Los Alamos National Laboratory, 2011. AAPM Task Group 36, 1994. Fetal Dose from Radiotherapy with Photon Beams

SILVEIRA, M .; CAMPOS, T. Radiodosimetric evaluation using the mcnp-5 code for radiosteoplasty in bone tumors in the limbs. Matter, v. 12, p. 186–92, 2007. DOI: https://doi.org/10.1590/S1517-70762007000100024

MENDES, B. M .; TRINDADE, B. M .; FONSECA, T. C. F.; CAMPOS, T. P. R.de. Assessment of radiation-induced secondary cancer risk in the brazilian population from left-sided breast-3d-crt using mcnpx. The British journal of radiology, The British Institute of Radiology., V. 90, n. 1080, p. 20170187, 2017. DOI: https://doi.org/10.1259/bjr.20170187

TAGHAVI, R .; MIRZAEI, H. R .; AGHAMIRI, S. M. R .; HAJIAN, P. Calculating the absorbed dose by thyroid in breast cancer radiotherapy using mcnp-4c code. Radiation Physics and Chemistry, Elsevier, v. 130, p. 12–14, 2017. DOI: https://doi.org/10.1016/j.radphyschem.2016.06.029

BAHREYNI TOSSI, MT .; MAHAMADIAN, N .; MOHAMMADI, M .; GHORBANI, M .; HASSANI, M .; KHAJETASH, B .; KHORSHIDI, F .; KNAUP, C. Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. Rep Pract Oncol Radiother. 2020 May-Jun; 25 (3): 456-461. doi: 10.1016 / j.rpor.2020.03.008. DOI: https://doi.org/10.1016/j.rpor.2020.03.008

BRENNER, D .; HUDA, W. Effective dose: A useful concept in diagnostic radiology? Radiation protection dosimetry, Oxford University Press, v. 128, n. 4, p. 503–508, 2008. DOI: https://doi.org/10.1093/rpd/ncn056

BEDNARZ, B. P. Detailed Varian clinac accelerator modeling for calculating intermediate- and low-level non-target organ doses from radiation treatments. Rensselaer Polytechnic Institute.2008.

CASSOLA, V. F .; MILIAN, F. M .; KRAMER, R .; LIRA, C. A. B. de O .; KHOURY, H. J. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female caucasian populations. Physics in Medicine & Biology, IOP Publishing, v. 56, n. 13, p. 3749, 2011. DOI: https://doi.org/10.1088/0031-9155/56/13/002

ICRP publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 2007; 37: 2-4.

SHEIKH-BAGHERI, D .; ROGERS, D. Monte Carlo calculation of nine megavoltage photon beam spectra using the beam code. Medical physics, Wiley Online Library, vol. 29, n. 3, p. 391–402, 2002. DOI: https://doi.org/10.1118/1.1445413

SANTOS, W. S .; NEVES, L .. P .; PERINI, A. P .; SANTOS, C. J .; BELINATO, W .; SILVA, R. M. V; SOARES, M. R .; VALERIANO, C. C .; CALDAS, L. V. E. Computational modeling of cervix uterus radiation procedure using a virtual anthropomorphic phantom and the MCNPX code. 2020. http://200.136.52.103/handle/123456789/30988.

RUDRA, S .; AL-HALLAQ, H. A .; FENG, C .; CHMURA, S. J .; HASAN, Y. Effect of rtog breast / chest wall guidelines on dose-volume histogram parameters. Journal of applied clinical medical physics, Wiley Online Library, v. 15, n. 2, p. 127–137, 2014. DOI: https://doi.org/10.1120/jacmp.v15i2.4547

FONSECA, E .; OLIVEIRA, C .; REBELLO, W .; MEDEIROS M. P .; FONSECA, C .; BAPTISTA, C. Calculation, using the code MCNPX, of equivalent doses in the 3D-CRT treatment of prostate cancer, with gantry operating at 45 °, 135 °, 225 ° and 315 °. Brazilian Journal of Radiation Sciences. 2020. DOI: https://doi.org/10.15392/bjrs.v8i1.1181

SCHETTINO, R. d. Ç.; JOTTA, L. M. G. N.; CASALI, G. D. Lung function in women with breast cancer undergoing radiation therapy: a pilot study. Physiotherapy and Research, SciELO Brasil, v. 17, n. 3, p. 248–252, 2010. DOI: https://doi.org/10.1590/S1809-29502010000300011

HORMATI, A .; HAJIANI, E .; ALAVINEJAD, P.; SHAYESTEH, A. A .; MASJEDIZADEH, A. R.; HASHEMI, S. J. Evaluation of breast cancer radiotherapy induced liver fibrosis by elastography.Journal of Gastroenterology and Hepatology Research. v. 3, n. 8, p.1026–1209, 2014.

LIZAR, J. C. 3D dosimetric comparison of breast cancer treatments using 3D conformational technique using filters and with direct and inverse IMRT in the presence of respiratory movement. (University of Sao Paulo). 2017.

CARVALHO, H. d. THE.; SALES C. P .; STUART S. R .; GIL, E .; NUNES, A. C. N.; FERAUCHE, D. C. Comparison between lung volumes irradiated with two-dimensional and three-dimensional techniques conformed to radiotherapy for patients with locally advanced lung tumors. Radiologia Brasileira, SciELO Brasil, vol. 42, n. 5, p. 303–308, 2009. DOI: https://doi.org/10.1590/S0100-39842009000500009

BARBOSA, T. P .; OLIVEIRA, H. F. Comparison between 3D conformational breast planning techniques, formed IMRT, tangent field hybrid IMRT and inverse IMRT. University of São Paulo, Ribeirão Preto, 2015.

AWAD, I .; ZAYED, D .; ABOUTOUK, N .; DAWOOD, T .. Moving From 2D to 3D-CRT Planning of Chest Wall for Postmastectomy Breast Cancer Patients: Mansoura University Experience Ann. Oncol. 23 ix114. 2012. DOI: https://doi.org/10.1016/S0923-7534(20)32880-5

FLOSI, A. A. Development of calculation of monitoring units for IMRT (University of São Paulo). 2011.

National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340. DOI: https://doi.org/10.17226/11340

JR, J. D. B .; HARVEY, E. B .; BLETTNER, M .; STOVALL, M .; FLANNERY, J. T. Cancer in the contralateral breast after radiotherapy for breast cancer. New England Journal of Medicine, Mass Medical Soc, v. 326, n. 12, p. 781–785, 1992. DOI: https://doi.org/10.1056/NEJM199203193261201

Downloads

Published

2022-09-18

How to Cite

Alva-Sánchez, M. S., de Souza Faés, G. R., de Souza Santos, W., & Alves Pianoschi Alva, T. (2022). Dosimetric assessment and secondary cancer risk in breast radiotherapy: a Monte Carlo approach. Brazilian Journal of Radiation Sciences, 10(3). https://doi.org/10.15392/bjrs.v10i3.2064

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)