Dosimetric assessment and secondary cancer risk in breast radiotherapy: a Monte Carlo approach
DOI:
https://doi.org/10.15392/bjrs.v10i3.2064Keywords:
Breast cancer, radiotherapy, dosimetry, anthropomorphic simulator, Monte CarloAbstract
To calculate the risk of secondary cancer induction resulting from this dose through a Monte Carlo simulation code and voxel-based anthropomorphic phantom to determine the radiation dose in organs and/or tissues with dosimetric importance and the effect of using static MLC in the 3D-CRT technique. In this work, a radiotherapy treatment of breast cancer was simulated using the radiation transport code MCNPX 2.7.0 and the adult anthropomorphic simulator FSTA_H50_M50. The absorbed doses for a set of organs with dosimetric importance were determined. A LINAC Varian 2100C device operated with two techniques was simulated: 2D with open field (OF) and 3D-conformational (3D-CRT), the latter with the use of a multilayer collimator (MLC) of the breast, both acting with 6 MV energy. The highest values of absorbed dose were obtained for the ipsilateral lung (7.22 Gy (3D-CRT) and 8.49 Gy (OF)) and the contralateral breast (6.29 Gy (3D-CRT) and 6.56 Gy (OF)), generating for these organs the greatest risks of secondary cancer induction. With the OF technique, due to the non-collimation of the beam, there was an increase in the absorbed dose in all organs compared to 3D-CRT, thus evidencing a more effective treatment with the 3D-CRT technique, improving both homogeneity and conformity with the dose absorbed in the target organ.
- Views: 359
- PDF Downloads: 231
- XML Downloads: 24
Downloads
References
OLIVEIRA, M. M. d .; MALTA, D. C .; GUAUCHE, H .; MOURA, L. d .; SILVA, G. A. Estimated number of people diagnosed with cancer in Brazil: data from the national health survey, 2013. Brazilian Journal of Epidemiology, SciELO Public Health, v. 18, p. 146-157, 2015. DOI: https://doi.org/10.1590/1980-5497201500060013
INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Estimate 2020: incidence of cancer in Brazil. 2020. Available in: https: //www.inca.gov.br/publicacoes/livros/estimativa-2020-incidencia-de-cancer-no-brasil. Access in: 02 out. 2020 [in Portuguese].
INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Cancer statistics. 2020. Available in: https: //www.inca.gov.br/numeros-de-cancer. Access in: 10 out. 2020 [in Portuguese].
INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Inca launches estimates of new cases of cancer for the 2020-2022.2020 period. Available in: https: //antigo.saude.gov.br/noticias/agencia-saude/46287-inca-lanca-estimativas-de-casos-novos- de-cancer-for-the-triennial-2020-2022. Access in: Oct 05 2020 [in Portuguese].
NASCIMENTO FILHO, A. C. S .; NOGUEIRA, S. Á. R .; PEREIRA, H. K. A .; PINHEIRO, S. L .; PINHEIRO JUNIOR, R. F. F. Molecular mechanisms of metformin as a therapeutic agent in the treatment of breast cancer. ID on Line REVISTA DE PSICOLOGIA, 12 (40), 9.2018. https://doi.org/10.14295/idonline.v12i40.1062 DOI: https://doi.org/10.14295/idonline.v12i40.1062
INSTITUTO NACIONAL DE CANCER (National Cancer Institute). Breast cancer. 2020. Available in: https: //www.inca.gov.br/tipos-de-cancer/cancer-de-mama. Access in: 10 out. 2020 [in Portuguese].
GHDX 2017 Brazil Mortality Information System (SIM). 2018. Available in: http: //ghdx.healthdata.org/series/brazil-mortality-information-system-sim. Access in: 20 sep. 2020 [in Portuguese].
ARRUDA, G. A. do N. Analysis of the compliance index and the homogeneity index in radiotherapy plans: comparison between IMRT, 3D-CRT techniques. 56. 2020. https://repositorio.unesp.br/handle/11449/191432
MENDES, M. A. Dosimetric Analysis of Organs Involved in Radiotherapy Treatment of the Prostate. 2019. https://repositorio.ufmg.br/handle/1843/RAOA-BCZJBV
CHIMIN, F. Analysis of the Complication Parameters in Normal Tissues (NTCP) in Computerized Planning Applied to Radiotherapy of Prostate Tumors.2020.
SANDRINI, E. S. Analysis of the peculiarities of the treatment of lung c ncer with stereotaxic radiotherapy using modulated volumetric arc and beam without a finder filter (Federal University of Rio de Janeiro). 2019.
GONZALEZ, A. B. D .; CURTIS, R. E .; GILBERT, E .; BERG, C. D .; SMITH, S. A .; STOVALL, M .; RON, E. Second solid cancers after radiotherapy for breast cancer in seer cancer registries. British journal of cancer, Nature Publishing Group, v. 102, n. 1, p. 220–226, 2010. DOI: https://doi.org/10.1038/sj.bjc.6605435
STOVALL, M .; SMITH, S. A .; LANGHOLZ, B. M .; JR, J. D. C .; SHORE, R. E .; ANDERSSON, M .; BUCHHOLZ, T. A .; CAPANU, M .; BERNSTEIN, L .; LYNCH, C. F .; MALONE, K. E .; ANTON-CULVER, H .; HAILE, R. W .; ROSENSTEIN, B. S .; REINER, A. S .; THOMAS, D. C .; BERNSTEIN, J. L. Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the we care study. International Journal of Radiation Oncology * Biology * Physics, Elsevier, v. 72, n. 4, p. 1021–1030, 2008. DOI: https://doi.org/10.1016/j.ijrobp.2008.02.040
HUANG, J .; MACKILLOP, W. J. Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer, Wiley Online Library, v. 92, n. 1, p. 172–180, 2001. DOI: https://doi.org/10.1002/1097-0142(20010701)92:1<172::AID-CNCR1306>3.0.CO;2-K
KIROVA, Y. M .; RYCKE, Y. de; GAMBOTTI, L .; PIERGA, J. Y .; ASSELAIN, B .; FOURQUET, A. Second malignancies after breast cancer: the impact of different treatment modalities. British journal of cancer, Nature Publishing Group, v. 98, n. 5, p. 870–874, 2008. DOI: https://doi.org/10.1038/sj.bjc.6604241
PELOWITZ, D. B. MCNPX User’s Manual, version 2.7.0. Report LA-CP-11-00438. Los Alamos National Laboratory, 2011. AAPM Task Group 36, 1994. Fetal Dose from Radiotherapy with Photon Beams
SILVEIRA, M .; CAMPOS, T. Radiodosimetric evaluation using the mcnp-5 code for radiosteoplasty in bone tumors in the limbs. Matter, v. 12, p. 186–92, 2007. DOI: https://doi.org/10.1590/S1517-70762007000100024
MENDES, B. M .; TRINDADE, B. M .; FONSECA, T. C. F.; CAMPOS, T. P. R.de. Assessment of radiation-induced secondary cancer risk in the brazilian population from left-sided breast-3d-crt using mcnpx. The British journal of radiology, The British Institute of Radiology., V. 90, n. 1080, p. 20170187, 2017. DOI: https://doi.org/10.1259/bjr.20170187
TAGHAVI, R .; MIRZAEI, H. R .; AGHAMIRI, S. M. R .; HAJIAN, P. Calculating the absorbed dose by thyroid in breast cancer radiotherapy using mcnp-4c code. Radiation Physics and Chemistry, Elsevier, v. 130, p. 12–14, 2017. DOI: https://doi.org/10.1016/j.radphyschem.2016.06.029
BAHREYNI TOSSI, MT .; MAHAMADIAN, N .; MOHAMMADI, M .; GHORBANI, M .; HASSANI, M .; KHAJETASH, B .; KHORSHIDI, F .; KNAUP, C. Assessment of skin dose in breast cancer radiotherapy: on-phantom measurement and Monte Carlo simulation. Rep Pract Oncol Radiother. 2020 May-Jun; 25 (3): 456-461. doi: 10.1016 / j.rpor.2020.03.008. DOI: https://doi.org/10.1016/j.rpor.2020.03.008
BRENNER, D .; HUDA, W. Effective dose: A useful concept in diagnostic radiology? Radiation protection dosimetry, Oxford University Press, v. 128, n. 4, p. 503–508, 2008. DOI: https://doi.org/10.1093/rpd/ncn056
BEDNARZ, B. P. Detailed Varian clinac accelerator modeling for calculating intermediate- and low-level non-target organ doses from radiation treatments. Rensselaer Polytechnic Institute.2008.
CASSOLA, V. F .; MILIAN, F. M .; KRAMER, R .; LIRA, C. A. B. de O .; KHOURY, H. J. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female caucasian populations. Physics in Medicine & Biology, IOP Publishing, v. 56, n. 13, p. 3749, 2011. DOI: https://doi.org/10.1088/0031-9155/56/13/002
ICRP publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 2007; 37: 2-4.
SHEIKH-BAGHERI, D .; ROGERS, D. Monte Carlo calculation of nine megavoltage photon beam spectra using the beam code. Medical physics, Wiley Online Library, vol. 29, n. 3, p. 391–402, 2002. DOI: https://doi.org/10.1118/1.1445413
SANTOS, W. S .; NEVES, L .. P .; PERINI, A. P .; SANTOS, C. J .; BELINATO, W .; SILVA, R. M. V; SOARES, M. R .; VALERIANO, C. C .; CALDAS, L. V. E. Computational modeling of cervix uterus radiation procedure using a virtual anthropomorphic phantom and the MCNPX code. 2020. http://200.136.52.103/handle/123456789/30988.
RUDRA, S .; AL-HALLAQ, H. A .; FENG, C .; CHMURA, S. J .; HASAN, Y. Effect of rtog breast / chest wall guidelines on dose-volume histogram parameters. Journal of applied clinical medical physics, Wiley Online Library, v. 15, n. 2, p. 127–137, 2014. DOI: https://doi.org/10.1120/jacmp.v15i2.4547
FONSECA, E .; OLIVEIRA, C .; REBELLO, W .; MEDEIROS M. P .; FONSECA, C .; BAPTISTA, C. Calculation, using the code MCNPX, of equivalent doses in the 3D-CRT treatment of prostate cancer, with gantry operating at 45 °, 135 °, 225 ° and 315 °. Brazilian Journal of Radiation Sciences. 2020. DOI: https://doi.org/10.15392/bjrs.v8i1.1181
SCHETTINO, R. d. Ç.; JOTTA, L. M. G. N.; CASALI, G. D. Lung function in women with breast cancer undergoing radiation therapy: a pilot study. Physiotherapy and Research, SciELO Brasil, v. 17, n. 3, p. 248–252, 2010. DOI: https://doi.org/10.1590/S1809-29502010000300011
HORMATI, A .; HAJIANI, E .; ALAVINEJAD, P.; SHAYESTEH, A. A .; MASJEDIZADEH, A. R.; HASHEMI, S. J. Evaluation of breast cancer radiotherapy induced liver fibrosis by elastography.Journal of Gastroenterology and Hepatology Research. v. 3, n. 8, p.1026–1209, 2014.
LIZAR, J. C. 3D dosimetric comparison of breast cancer treatments using 3D conformational technique using filters and with direct and inverse IMRT in the presence of respiratory movement. (University of Sao Paulo). 2017.
CARVALHO, H. d. THE.; SALES C. P .; STUART S. R .; GIL, E .; NUNES, A. C. N.; FERAUCHE, D. C. Comparison between lung volumes irradiated with two-dimensional and three-dimensional techniques conformed to radiotherapy for patients with locally advanced lung tumors. Radiologia Brasileira, SciELO Brasil, vol. 42, n. 5, p. 303–308, 2009. DOI: https://doi.org/10.1590/S0100-39842009000500009
BARBOSA, T. P .; OLIVEIRA, H. F. Comparison between 3D conformational breast planning techniques, formed IMRT, tangent field hybrid IMRT and inverse IMRT. University of São Paulo, Ribeirão Preto, 2015.
AWAD, I .; ZAYED, D .; ABOUTOUK, N .; DAWOOD, T .. Moving From 2D to 3D-CRT Planning of Chest Wall for Postmastectomy Breast Cancer Patients: Mansoura University Experience Ann. Oncol. 23 ix114. 2012. DOI: https://doi.org/10.1016/S0923-7534(20)32880-5
FLOSI, A. A. Development of calculation of monitoring units for IMRT (University of São Paulo). 2011.
National Research Council. 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: The National Academies Press. https://doi.org/10.17226/11340. DOI: https://doi.org/10.17226/11340
JR, J. D. B .; HARVEY, E. B .; BLETTNER, M .; STOVALL, M .; FLANNERY, J. T. Cancer in the contralateral breast after radiotherapy for breast cancer. New England Journal of Medicine, Mass Medical Soc, v. 326, n. 12, p. 781–785, 1992. DOI: https://doi.org/10.1056/NEJM199203193261201
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/