A brief history of Accident Chernobyl: Simulation of the influence of Neutron Absorbing Poisons and temperature feedback effects by Point Kinetics Equations
DOI:
https://doi.org/10.15392/bjrs.v10i3.2082Keywords:
Neutron Point Kinetics Equations, Temperature feedback, Absorbers poisons, Chernobyl accident simulation, Rosenbrock methodAbstract
In this paper, the solution of the Neutron Point Kinetics model is presented, adding the effects of temperature and absorbers poisons within a historical and technical context to simulate the preliminary characteristics of the Chernobyl accident. The Point Kinetics model was able to extract physical information consistent with what was expected to predict the reactor situation until the accident. It was also possible to verify, given the results, that the Rosenbrock method was able to overcome the degree of stiffness of the ODE system, besides solving a non-linear problem. Thus, this study has contributed to highlighting the importance of temperature effects and especially absorbers poisons in the final power behavior, extremely relevant for decision making in the operation and safety of a nuclear power plant.
- Views: 371
- XML Downloads: 106
- PDF Downloads: 234
Downloads
References
CASTILHO, M. A.; SUGUIMOTO, D. Y. L. Chernobyl - A catástrofe. Rev. da UninCor, v. 12, p. 316-322, 2014. DOI: https://doi.org/10.5892/ruvrd.v12i2.1506
CHAN, P. S. W.; DASTUR, A. R.; GRANT, S. D.; HOPWOOD, J. M.; CHEXAL, B. Multidimensional Analysis of the Chernobyl accident. Atomic Energy of Canada Limited and Electric Power Research Institute AECL-9604. Canada, 1988.
PLOKHY, S. Chernobyl: History of a Tragedy. London: Penguin Press, 2018.
MEDVEDEV, G. The Truth about Chernobyl. New York: Tauris, 1991.
FLETCHER, C.D.; CHAMBERS, R.; BOLANDER, M. A.; DALLMAN, R. J. Simulation of the Chernobyl accident. Nucl. Eng. Des., v. 105, p. 157-172, 1988. DOI: https://doi.org/10.1016/0029-5493(88)90337-8
YOSHIDA, K.; TANABE, F.; HIRANO, M.; KOHSAKA A. Analyses of Power Excursion Event in Chernobyl Accident with RETRAN Code. Taylor & Francis. J. Nucl. Sci. Technol. v. 23, p. 1107-1109, 1986. DOI: https://doi.org/10.1080/18811248.1986.9735104
GEER, L.; PERSSON, C.; RODHE, H. A Nuclear Jet at Chernobyl Around 21:23:45 UTC on April 25, 1986. Nucl. Technol., v. 201, p. 11-22, 2017. DOI: https://doi.org/10.1080/00295450.2017.1384269
PARISI, C. Nuclear Safety of RBMK Reactors. Tese de doutorado em Engenharia Leonardo da Vinci, Universidade de Pisa, 2008.
NAHLA, A. A. An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects. Ann. Nucl. Energy., v. 38, p. 2810-2817, 2011. DOI: https://doi.org/10.1016/j.anucene.2011.08.021
ABOANBER, A. E.; NAHLA, A. A.; AL-MALKI, F. A.. Stability of the analytical perturbation for nonlinear coupled kinetics equations. In: Intl. Conf. On Mathematics, Trends and Development ICMTD12, Egyptian Mathematical Society, Cairo, Egypt, 2012.
MOHIDEEN ABDUL RAZAK, M.; RATHINASAMY, N.. Haar wavelet for solving the inverse point kinetics equations and estimation of feedback reactivity coefficient under background noise. Nucl. Eng. Des., v. 335, p. 202-209, 2018. DOI: https://doi.org/10.1016/j.nucengdes.2018.04.022
ABOANBER, A.; HAMADA, D. Power series solution (PWS) of nuclear reactor dynamics with newtonian temperature feedback. Ann. Nucl. Energy., v. 30, p. 1111-1122, 2003. DOI: https://doi.org/10.1016/S0306-4549(03)00033-1
SATHIYASHEELA, T. Power series solution method for solving point kinetics equations with lumped model temperature and feedback. Ann. Nucl. Energy. v. 36, p. 246-250, 2009. DOI: https://doi.org/10.1016/j.anucene.2008.11.005
PAGANIN, T. M.; BODMANN, B. E. J.; VILHENA, M. T. On a point kinetic model for nuclear reactors considering the variation in fuel composition. J. Prog. Nucl. Energy., v. 118, p. 103-134, 2020. DOI: https://doi.org/10.1016/j.pnucene.2019.103134
YANG, X.; JEVREMOVIC, T. Revisiting the Rosenbrock numerical solutions of the reactor point kinetics equation with numerous examples. J. Nucl. Technol. Radiat. Prot., v. 24, p. 3-12, 2009. DOI: https://doi.org/10.2298/NTRP0901003Y
SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Solution of the Neutron Point Kinetics equations by applying the Rosenbrock method. In: 18th Brazilian Congress of Thermal Sciences and Engineering, Online, 2020. DOI: https://doi.org/10.26678/ABCM.ENCIT2020.CIT20-0765
SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Solução das equações da cinética pontual de nêutrons com feedback de temperatura via método de Rosenbrock. In: XXIII Encontro Nacional de Modelagem Computacional, Palmas, TO, 2020.
SCHAUN, N. B.; TUMELERO, F.; PETERSEN, C. Z. Influence of the main neutron absorbers poisons coupled to the Point Kinetics model by the Rosenbrock’s method. BRAZILIAN JOURNAL OF RADIATION SCIENCES, v. 10, p. 1-20, 2022. DOI: https://doi.org/10.15392/bjrs.v10i1.1705
DUDERSTADT, J., HAMILTON, L. Nuclear Reactor Analysis. New York: John Wiley & Sons, 1976.
CURTISS, C.; HIRSCHFELDER, J. Integration of Stiff Equations. Proceedings of the National Academy of Sciences of the United States of America, v. 38, p. 235-243, 1952. DOI: https://doi.org/10.1073/pnas.38.3.235
VOSS, D. A. Fourth-order parallel Rosenbrock formulae for stiff systems. J. Math. Comput. Model. Dyn. Syst., v. 40, p. 1193-1198, 2004. DOI: https://doi.org/10.1016/j.mcm.2005.01.013
ABOANBER, A. E; HAMADA, Y. Generalized Runge–Kutta method for two and three-dimensional space–time diffusion equations with a variable time step. Ann. Nucl. Energy., v. 35, p. 1024-1040, 2008. DOI: https://doi.org/10.1016/j.anucene.2007.10.008
KAPS, P.; RENTROP, P. Generalized Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numer Math., v. 33, p. 55-68, 1979. DOI: https://doi.org/10.1007/BF01396495
ABOANBER, A. E. Stability of generalized Runge–Kutta methods for stiff kinetics coupled differential equations. J. Phys. A Math. Theor., v. 39, p. 1859-1876, 2006. DOI: https://doi.org/10.1088/0305-4470/39/8/006
SILVA, D. E. Acidente de Chernobyl (causas e consequências). Rio de Janeiro: Comissão Nacional de Energia Nuclear (CNEN), 1986.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/