Evaluation of the radiation shielding properties of ornamental rocks produced in Brazil: A Monte Carlo approach
DOI:
https://doi.org/10.15392/2319-0612.2023.2104Keywords:
Granitic rocks, Monte Carlo simulation, gamma radiationAbstract
In this work, the Monte Carlo MCNPX (2.7.0) code was used to evaluate the radioprotective properties of ten ornamental granitic samples produced in Brazil. For each sample of granite, the mass attenuation coefficient (µ/ρ) and half-value layer (HVL) were evaluated using the photon energy emitted by the following radioisotopes: 241Am (59,5 keV), 133Ba (356 keV), 137Cs (662 keV), 60Co (1250 keV), and 22Na (1274 keV). The MCNPX results showed agreement with the values obtained by using the XCOM database, as well as with theoretical and experimental results, available on the literature. The computational model built in this work can be used by the scientific community interested in parameters involving new materials for gamma radiation shielding, which has been used in different areas of the nuclear sciences.
- Views: 237
- PDF Downloads: 159
- XML Downloads: 4
Downloads
References
TEKIN, H. O.; ERGUZEL, T. T.; SAYYED, M. I.; SINGH, V. P.; MANICI, T.; ALTUNSOY, E. E.; AGAR, O. An Investigation on shielding properties of different granite samples using MCNPX code. Dig J Nanomater Biostructures, 13, 381-389, 2018.
TEKIN, H. O.; SINGH, V. P.; MANICI, T.; ALTUNSOY, E. E. Validation of MCNPX with ex-perimental results of mass attenuation coefficients for cement, gypsum and mixture. J Radiat Prot Res, 42, 154 – 157, 2017.doi: 10.14407/jrpr.2017.42.3.154. DOI: https://doi.org/10.14407/jrpr.2017.42.3.154
AKKURT, I.; AKYILDIRIM, H.; MAVI, B.; KILINCARSLAN, S.; BASYIGT, C. Photon atten-uation coefficients of concrete includes barite in different rate. Ann Nucl Energy 37, 910–914, 2010. doi:10.1016/j.anucene. 2010.04.001. DOI: https://doi.org/10.1016/j.anucene.2010.04.001
BOUZARJOMEHRI, F.; BAYAT, T.; DASHTI, M. H.; GHISARI, J.; ABDOLI, N. 60Co γ -ray attenuation coefficient of barite concrete. Iran Radiat Res. 4, 71–75, 2006.
PICHA, R.; CHANNUIE, J.; KHAWEERAT, S.; LIAMSUWAN, T.; PROMPING, J.; RATANATONGCHAI, W.; SILVA, K.; WONGLEE, S. Gamma and neutron attenuation properties of barite-cement mixture. J Phys Conf Ser. 611, 1–7, 2015. doi:10.1088/1742-6596/611/1/012002 DOI: https://doi.org/10.1088/1742-6596/611/1/012002
LING, T. C.; POON, C. S.; LAM, W. S.; CHAN, T. P.; FUNG, K. K. L. X-ray radiation shield-ing properties of cement mortars prepared with different types of aggregates. Mater Struct. 4, 1133–1141, 2013. doi:10.1617/s11527-012-9959-2. DOI: https://doi.org/10.1617/s11527-012-9959-2
SHARIFI, S.; BAGHERI, R.; SHIRMADI, S. P. Comparison of shielding properties for ordi-nary, barite, serpentine and steel-magnetite using MCNP-4C code and available experimental re-sults. Ann Nucl Energy, 53, 529–534, 2013. doi:10.1016/j.anucene.2012.09.015. DOI: https://doi.org/10.1016/j.anucene.2012.09.015
OBAID, S. S.; SAYYED, M. I.; GAIKWAD, D. K.; TEKIN, H. O.; ELMAHROUG, Y.; PAWAR, P. P. Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat Eff Defects Solids, 2018. doi:10.1080/10420150.2018.1505890. DOI: https://doi.org/10.1080/10420150.2018.1505890
SINGH, V. P.; ALI, A. M.; BADIGER, N. M.; & EL-KHAYATT, A. M. Monte Carlo simula-tion of gamma ray shielding parameters of concretes. Nucl Eng Des, 265, 1071 - 1077, 2013. doi:10.1016/j.nucengdes.2013.10.008 DOI: https://doi.org/10.1016/j.nucengdes.2013.10.008
PEREIRA, M.A.M.; SILVEIRA, L.M.; NANNINI, F.; NEVES, L.P.; PERINI, A.P.; SANTOS, C.J.; BELINATO, W.; SANTOS, W.S. Dosimetric evaluation of individuals to 238U series, 232Th series and 40K radionuclides present in Brazilian ornamental rocks using computational simula-tion. Ecotoxicol Environ Saf, 173, 401-410, 2019. doi:10.1016/j.ecoenv.2019.02.038 DOI: https://doi.org/10.1016/j.ecoenv.2019.02.038
CHAPPELL, B. W.; WHITE, A. J. R.; WYBORN, D. The Importance of Residual Source Ma-terial (Restite) in Granite Petrogenesis. J Petrol, 28, 1111–1138, 1987. doi.org/10.1093/petrology/28.6.1111 DOI: https://doi.org/10.1093/petrology/28.6.1111
OZYURT, O.; ALTINSOY, N.; KARAASLAN, Ş. İ.; BORA, A.; BUYUK, B.; ERK, İ. Calcu-lation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simula-tion code. Radiat Phys Chem. 144, p. 271-275, 2018. DOI: https://doi.org/10.1016/j.radphyschem.2017.08.024
NAJAM, L.A.; HASHIM, A.K.; AHMED, H.A.; HASSAN, I.M. Study the attenuation coeffi-cient of granite to use It as shields against gamma ray. Detection, 4, 33 – 39, 2016. 10.4236/detection.2016.42005 DOI: https://doi.org/10.4236/detection.2016.42005
PELOWITZ, D. B. MCNPX User`s Manual, version 2.7.0. Report LA-CP-11-00438. Los Alamos National Laboratory, 2011.
BERGE, M. J.; J. H. HUBBELL. XCOM: Photon Cross Section on a Personal Computer. United States, 1987. Available on https://physics.nist.gov/cgi-bin/Xcom/xcom2 DOI: https://doi.org/10.2172/6016002
SILVA, J. A.; GODOY, A. M.; ARAUJO, L.M.B. Rochas Ornamentais e de Revestimento do sudoeste do Estado do Mato Grosso. Geociênc., 28, 129–42, 2009.
MATTOS, I.C.; ARTUR, A.C.; NOGUEIRA NETO, J A. Caracterização Petrográfica e tecno-lógica de granitos ornamentais do Stock Granítico Serra do Barriga, Sobral/CE São Paulo. Geoci-ênc. 32, 247–68, 2013.
SAAR, L. C. A.; GODOY, A. M.; BOLONINI, T. M. 2015 Considerações sobre os granitos Giallo São Francisco Real, Branco Dallas e Branco Marfim no Município de Barra de São Fran-cisco—ES para aplicaçãoo como rocha ornamental e de revestimento. Geociênc., 34,1–18, 2015.
SANTOS, W.S.; NEVES, L.P.; BELINATO, W.; SOARES, M.R; VALENÇA, J.V.B.; PERINI, A.P. Computational dose evaluation on children exposed to natural radioactivity from granitic rocks used as architectual materials. J. Radiol. Prot, 42 (1), 011511, 2022. doi: 10.1088/1361-6498/ac36bc. DOI: https://doi.org/10.1088/1361-6498/ac36bc
ABDEL-HASEIBA, A.Y.; AHMEDA, Z.; HASSAN, MEDHAT M. Investigation of the gam-ma rays attenuation coefficients by experimental and mcnp simulation for polyamide 6/ acryloni-trile-butadiene–styrene blends. J Nucl Radiat Phy, 13, 81 – 89, 2018.
MANJUNATHA, H.; SEENAPPPA, L. Gamma and X-ray shielding properties of various types of steels. J Nucl Eng Radiat Sci, 5, 1 – 7, 2019. doi:10.1115/1.4043814 DOI: https://doi.org/10.1115/1.4043814
MCCONN, R. J.; GESG,C. J.; PAGH, T. T.; RUCKER, R. A.; WILLIAMS, R. G. Compendi-um of material composition data for radiation transport modeling. Pacific Northwest National Laboratory, USA, 2011. DOI: https://doi.org/10.2172/1023125
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/