Evaluation of the radiation shielding properties of ornamental rocks produced in Brazil: A Monte Carlo approach

Authors

DOI:

https://doi.org/10.15392/2319-0612.2023.2104

Keywords:

Granitic rocks, Monte Carlo simulation, gamma radiation

Abstract

In this work, the Monte Carlo MCNPX (2.7.0) code was used to evaluate the radioprotective properties of ten ornamental granitic samples produced in Brazil. For each sample of granite, the mass attenuation coefficient (µ/ρ) and half-value layer (HVL) were evaluated using the photon energy emitted by the following radioisotopes: 241Am (59,5 keV), 133Ba (356 keV), 137Cs (662 keV), 60Co (1250 keV), and 22Na (1274 keV). The MCNPX results showed agreement with the values obtained by using the XCOM database, as well as with theoretical and experimental results, available on the literature. The computational model built in this work can be used by the scientific community interested in parameters involving new materials for gamma radiation shielding, which has been used in different areas of the nuclear sciences.

Downloads

Download data is not yet available.

References

TEKIN, H. O.; ERGUZEL, T. T.; SAYYED, M. I.; SINGH, V. P.; MANICI, T.; ALTUNSOY, E. E.; AGAR, O. An Investigation on shielding properties of different granite samples using MCNPX code. Dig J Nanomater Biostructures, 13, 381-389, 2018.

TEKIN, H. O.; SINGH, V. P.; MANICI, T.; ALTUNSOY, E. E. Validation of MCNPX with ex-perimental results of mass attenuation coefficients for cement, gypsum and mixture. J Radiat Prot Res, 42, 154 – 157, 2017.doi: 10.14407/jrpr.2017.42.3.154. DOI: https://doi.org/10.14407/jrpr.2017.42.3.154

AKKURT, I.; AKYILDIRIM, H.; MAVI, B.; KILINCARSLAN, S.; BASYIGT, C. Photon atten-uation coefficients of concrete includes barite in different rate. Ann Nucl Energy 37, 910–914, 2010. doi:10.1016/j.anucene. 2010.04.001. DOI: https://doi.org/10.1016/j.anucene.2010.04.001

BOUZARJOMEHRI, F.; BAYAT, T.; DASHTI, M. H.; GHISARI, J.; ABDOLI, N. 60Co γ -ray attenuation coefficient of barite concrete. Iran Radiat Res. 4, 71–75, 2006.

PICHA, R.; CHANNUIE, J.; KHAWEERAT, S.; LIAMSUWAN, T.; PROMPING, J.; RATANATONGCHAI, W.; SILVA, K.; WONGLEE, S. Gamma and neutron attenuation properties of barite-cement mixture. J Phys Conf Ser. 611, 1–7, 2015. doi:10.1088/1742-6596/611/1/012002 DOI: https://doi.org/10.1088/1742-6596/611/1/012002

LING, T. C.; POON, C. S.; LAM, W. S.; CHAN, T. P.; FUNG, K. K. L. X-ray radiation shield-ing properties of cement mortars prepared with different types of aggregates. Mater Struct. 4, 1133–1141, 2013. doi:10.1617/s11527-012-9959-2. DOI: https://doi.org/10.1617/s11527-012-9959-2

SHARIFI, S.; BAGHERI, R.; SHIRMADI, S. P. Comparison of shielding properties for ordi-nary, barite, serpentine and steel-magnetite using MCNP-4C code and available experimental re-sults. Ann Nucl Energy, 53, 529–534, 2013. doi:10.1016/j.anucene.2012.09.015. DOI: https://doi.org/10.1016/j.anucene.2012.09.015

OBAID, S. S.; SAYYED, M. I.; GAIKWAD, D. K.; TEKIN, H. O.; ELMAHROUG, Y.; PAWAR, P. P. Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat Eff Defects Solids, 2018. doi:10.1080/10420150.2018.1505890. DOI: https://doi.org/10.1080/10420150.2018.1505890

SINGH, V. P.; ALI, A. M.; BADIGER, N. M.; & EL-KHAYATT, A. M. Monte Carlo simula-tion of gamma ray shielding parameters of concretes. Nucl Eng Des, 265, 1071 - 1077, 2013. doi:10.1016/j.nucengdes.2013.10.008 DOI: https://doi.org/10.1016/j.nucengdes.2013.10.008

PEREIRA, M.A.M.; SILVEIRA, L.M.; NANNINI, F.; NEVES, L.P.; PERINI, A.P.; SANTOS, C.J.; BELINATO, W.; SANTOS, W.S. Dosimetric evaluation of individuals to 238U series, 232Th series and 40K radionuclides present in Brazilian ornamental rocks using computational simula-tion. Ecotoxicol Environ Saf, 173, 401-410, 2019. doi:10.1016/j.ecoenv.2019.02.038 DOI: https://doi.org/10.1016/j.ecoenv.2019.02.038

CHAPPELL, B. W.; WHITE, A. J. R.; WYBORN, D. The Importance of Residual Source Ma-terial (Restite) in Granite Petrogenesis. J Petrol, 28, 1111–1138, 1987. doi.org/10.1093/petrology/28.6.1111 DOI: https://doi.org/10.1093/petrology/28.6.1111

OZYURT, O.; ALTINSOY, N.; KARAASLAN, Ş. İ.; BORA, A.; BUYUK, B.; ERK, İ. Calcu-lation of gamma ray attenuation coefficients of some granite samples using a Monte Carlo simula-tion code. Radiat Phys Chem. 144, p. 271-275, 2018. DOI: https://doi.org/10.1016/j.radphyschem.2017.08.024

NAJAM, L.A.; HASHIM, A.K.; AHMED, H.A.; HASSAN, I.M. Study the attenuation coeffi-cient of granite to use It as shields against gamma ray. Detection, 4, 33 – 39, 2016. 10.4236/detection.2016.42005 DOI: https://doi.org/10.4236/detection.2016.42005

PELOWITZ, D. B. MCNPX User`s Manual, version 2.7.0. Report LA-CP-11-00438. Los Alamos National Laboratory, 2011.

BERGE, M. J.; J. H. HUBBELL. XCOM: Photon Cross Section on a Personal Computer. United States, 1987. Available on https://physics.nist.gov/cgi-bin/Xcom/xcom2 DOI: https://doi.org/10.2172/6016002

SILVA, J. A.; GODOY, A. M.; ARAUJO, L.M.B. Rochas Ornamentais e de Revestimento do sudoeste do Estado do Mato Grosso. Geociênc., 28, 129–42, 2009.

MATTOS, I.C.; ARTUR, A.C.; NOGUEIRA NETO, J A. Caracterização Petrográfica e tecno-lógica de granitos ornamentais do Stock Granítico Serra do Barriga, Sobral/CE São Paulo. Geoci-ênc. 32, 247–68, 2013.

SAAR, L. C. A.; GODOY, A. M.; BOLONINI, T. M. 2015 Considerações sobre os granitos Giallo São Francisco Real, Branco Dallas e Branco Marfim no Município de Barra de São Fran-cisco—ES para aplicaçãoo como rocha ornamental e de revestimento. Geociênc., 34,1–18, 2015.

SANTOS, W.S.; NEVES, L.P.; BELINATO, W.; SOARES, M.R; VALENÇA, J.V.B.; PERINI, A.P. Computational dose evaluation on children exposed to natural radioactivity from granitic rocks used as architectual materials. J. Radiol. Prot, 42 (1), 011511, 2022. doi: 10.1088/1361-6498/ac36bc. DOI: https://doi.org/10.1088/1361-6498/ac36bc

ABDEL-HASEIBA, A.Y.; AHMEDA, Z.; HASSAN, MEDHAT M. Investigation of the gam-ma rays attenuation coefficients by experimental and mcnp simulation for polyamide 6/ acryloni-trile-butadiene–styrene blends. J Nucl Radiat Phy, 13, 81 – 89, 2018.

MANJUNATHA, H.; SEENAPPPA, L. Gamma and X-ray shielding properties of various types of steels. J Nucl Eng Radiat Sci, 5, 1 – 7, 2019. doi:10.1115/1.4043814 DOI: https://doi.org/10.1115/1.4043814

MCCONN, R. J.; GESG,C. J.; PAGH, T. T.; RUCKER, R. A.; WILLIAMS, R. G. Compendi-um of material composition data for radiation transport modeling. Pacific Northwest National Laboratory, USA, 2011. DOI: https://doi.org/10.2172/1023125

Downloads

Published

2023-03-22

How to Cite

Santos, W. de S., Santos, C. de J., Neves, L. P., Belinato, W., Soares, M. R., Valença, J. V., & Perini, A. P. (2023). Evaluation of the radiation shielding properties of ornamental rocks produced in Brazil: A Monte Carlo approach. Brazilian Journal of Radiation Sciences, 11(01). https://doi.org/10.15392/2319-0612.2023.2104

Issue

Section

Articles

Most read articles by the same author(s)