Development of anthropomorphic computational phantoms at the UFPE
DOI:
https://doi.org/10.15392/2319-0612.2023.2243Keywords:
Monte Carlo methods, exposure computational models, anthropomorphic computational phantoms, EGSnrcAbstract
To evaluate the amount of energy deposited in radiosensitive organs and tissues of the human body, when an anthropomorphic phantom is irradiated, researchers in numerical dosimetry use the so-called exposure computational models (ECMs). One can imagine an ECM as a virtual scene composed of a phantom in a mathematically defined position in relation to a radioactive source. The source in these ECMs produces the initial state of the simulation: the position, direction, and energy with which each particle enters the phantom are essential variables. For subsequent states of a particle history, robust Monte Carlo (MC) codes are used. For the subsequent states of a particle's history, robust Monte Carlo (MC) codes are used, which simulate the average free path that the particle performs without interacting, its interaction with the atoms in the medium and the amount of energy deposited per interaction. MC codes also evaluate normalization quantities, so the results are printed in text files in the form of conversion coefficients between the absorbed dose and the selected normalization quantity. From the 2000s, the authors have published ECMs where a voxel phantom is irradiated by photons in the environment of the MC code EGSnrc (EGS = Electron Gamma Shower; nrc = National Research Council Canada). The production of articles, dissertations and theses required the use of specific computational tools, such as the FANTOMAS, DIP (Digital Image Processing) and Monte Carlo applications, for the various steps of numerical dosimetry, which ranges from the preparation of input files to the execution from the ECM to the organization and graphical and numerical analysis of the results. This article reviews computational phantoms for dosimetry mainly those produced in DEN-UFPE dissertations and thesis.
- Views: 333
- PDF Downloads: 183
- XML Downloads: 47
Downloads
References
VIEIRA, J. W. Construção de um Modelo Computacional de Exposição para Cálculos Do-simétricos Utilizando o Código Monte Carlo EGS4 e Fantomas de Voxels, Tese de Douto-rado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Per-nambuco, Brasil, 2004.
VIEIRA, J. W.; STOSIC, B.; LIMA, F. R. A.; KRAMER, R.; SANTOS, A. M.; LIMA, V. J. M. Um Aplicativo para Editar Fantomas de Voxels e Calcular Coeficientes de Conversão pa-ra a Proteção Radiológica. In: INTERNATIONAL JOINT CONFERENCE RADIO 2005, An-nals RADIO 2005, ABENDE, Rio de Janeiro, 2005.
VIEIRA, J. W.; LIMA, F. R. A. A Software to Digital Image Processing to Be Used in the Voxel Phantom Development, Cell. Mol. Biol., v. 55, n. 3, p. 16-22, 2009.
PETZOLD, C. Programming Windows, Microsoft Press, USA, 1999.
NELSON, W. R.; HIRAYAMA, H.; ROGERS, D. W. O. The EGS4 Code System, Report SLAC-265, Stanford Linear Accelerator Center, Stanford University, Stanford, USA, 1985.
KRAMER, R.; VIEIRA, J. W.; KHOURY, H. J.; LIMA, F. R. A.; FUELLE. D. All about MAX: A Male Adult Voxel Phantom for Monte Carlo Calculations in the Area of Radiation Protec-tion Dosimetry, Phys. Med. Biol., v. 48, p. 1239-1262, 2003. DOI: https://doi.org/10.1088/0031-9155/48/10/301
KRAMER, R.; KHOURY, H. J.; VIEIRA, J. W.; LOUREIRO, E. C. M.; LIMA, V. J. M.; LIMA, F. R. A.; HOFF, G. All About Fax: A Female Adult Voxel Phantom for Monte Carlo Calcula-tion in Radiation Protection Dosimetry, Phys. Med. Biol., v. 49, p. 5203-5216, 2004A. DOI: https://doi.org/10.1088/0031-9155/49/23/001
ICRP 60, 1990 Recommendations of the International Commission on Radiological Pro-tection, ICRP Publication 60, Ann. ICRP 21 (1-3), 1991.
ICRP 89, Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values, ICRP Publication 89, Pergamon Press, Oxford, 2003.
TEMPLEMAN, J.; OLSEN, A. Microsoft Visual C++ .NET, Step by Step, Microsoft Press, USA, 2002.
SHARP, J. Microsoft Visual C# 2013: Passo a Passo, Bookman, Porto Alegre, RS, Brasil, 2014.
VIEIRA, J. W.; LEAL NETO, V.; LIMA FILHO, J. M.; LIMA, F. R. A. Desenvolvimento de Algoritmos Simuladores de Fontes Radioativas Planares para Uso em Modelos Computacio-nais de Exposição, Brazilian Journal of Radiation Sciences, v. 1, p. 1-17, 2013. DOI: https://doi.org/10.15392/bjrs.v1i1.10
KAWRAKOW, I.; MAINEGRA-HING, E.; ROGERS, D. W. O.; TESSIER, F.; WALTERS, B. R. B. The EGSnrc Code System: Monte Carlo simulation of electron and photon transport. Technical Report PIRS-701. National Research Council Canada, Ottawa, 2021.
VIEIRA, J. W. MonteCarlo – Um Aplicativo para Uso em Avaliações Dosimétricas das Radiações Ionizantes, Tese para Progressão à Classe Titular do IFPE, Recife, Pernambuco, Brasil, 2017.
ICRP 145, Adult Mesh-Type Reference Computational Phantoms, ICRP Publication 145, ICRP 49(3), 2020. DOI: https://doi.org/10.1177/0146645319893605
GONZALEZ, R. C.; WOODS, R. E. Processamento Digital de Imagens, Pearson Education do Brasil, São Paulo, SP, Brasil, 2010.
FISHER. H. L.; SNYDER, W. S. Distribution of Dose in the Body from a Source of Gam-ma Rays Distributed Uniformly in an Organ, Report n. ORNL-4168, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA, 1967.
ICRP 23, Report of the Task Group on Reference Man, International Commission on Radi-ological Protection, Pergamon Press, Oxford, 1975.
SNYDER, W. S.; FORD, M. R.; WARNER, G. G.; FISHER, H. L. Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom, MIRD Pamphlet n. 5, J. Nucl. Med., v. 10: Suppl. n. 3, p. 7-52, 1969.
KRAMER, R.; ZANKL, M.; WILLIAMS, G.; DREXLER, G. The Calculation of Dose from External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods. Part I: The Male (ADAM) and Female (EVA) Adult Mathematical Phantoms, GSF-Bericht S-885, GSF-National Research for Environment and Health, Neuherberg, 1982.
KRAMER, R.; VIEIRA, J. W.; KHOURY, H. J.; LIMA, F. R. A. MAX Meets ADAM: A Do-simetric Comparison between a Voxel-Based and a Mathematical Model for External Expo-sure to Photons, Phys. Med. Biol., v. 49, p. 887-910, 2004B. DOI: https://doi.org/10.1088/0031-9155/49/6/002
ICRP 110, Adult Reference Computational Phantoms, ICRP Publication 110, Elsevier Ltd, 2009.
ICRP 147, Use of Dose Quantities in Radiological Protection, ICRP Publication 147, Ann. ICRP 50(1), 2021. DOI: https://doi.org/10.1177/0146645320911864
VIEIRA, J. W.; SANTOS, A. M.; LIMA, F. R. A. Tratamento de Imagens Tomográficas para Uso em Dosimetria Numérica, In: First American IRPA Congress, XXIV SMSR Annual Meeting XVII Annual SNM Congress, Acapulco, 2006.
NIKOLAIDIS, N. PITAS, I. 3-D Image Processing Algorithms, USA: John Wiley & Sons, 2001.
GIBBS, S. J.; PUJOL, A.; CHEN, T-S.; MALCOLM, A. W.; JAMES, A. E. Patient Risk from Interproximal Radiography, Oral Surg. Oral Med. Oral Pathol., v. 58, p. 347-354, 1984. DOI: https://doi.org/10.1016/0030-4220(84)90066-5
WILLIAMS, G.; ZANKL, M.; ABMAYR, W.; VEIT, R.; DREXLER, G. The Calculation of Dose from External Photon Exposures Using Reference and Realistic Human Phantoms and Monte Carlo Methods, Phys. Med. Biol., v. 31, p. 347-354, 1986. DOI: https://doi.org/10.1088/0031-9155/31/4/010
ZUBAL, I. G.; HARRELL, C. R.; SMITH, E. O.; RATTNER, Z.; GINDI, G.; HOFFER, P. B. Computerized Three-Dimensional Segmented Human Anatomy, Med. Phys., v. 21 (2), p. 299-302, 1994a. DOI: https://doi.org/10.1118/1.597290
ZUBAL, I. G.; HARRELL, C. R.; SMITH, E. O.; SMITH, A. L.; KRISCHLUNAS, P. High Resolution, MRI-Based, Segmented, Computerized Head Phantom, 1994b. Available at <http://noodle.med.yale.edu/zubal>.
ZUBAL, I. G.; HARRELL, C. R.; SMITH, E. O.; SMITH, A. L. Two Dedicated Software, Voxel-Based, Anthropomorphic (Torso and Head) Phantoms, In: Proceedings of an Interna-tional Workshop on Voxel Phantom Development held at the National Radiological Protection Board, Chilton, UK, 6-7 July, 1995.
KRAMER, R.; KHOURY, H. J.; VIEIRA, J. W.; LIMA, V. J. M. MAX06 and FAX06: Update of Two Adult Human Phantoms for Radiation Protection Dosimetry, Phys. Med. Biol., v. 51, p. 3331-3346, 2006. DOI: https://doi.org/10.1088/0031-9155/51/14/003
KRAMER, R.; KHOURY, H. J.; VIEIRA, J. W.; KAWRAKOW, I. Skeletal Dosimetry for External Exposure to Photons Based on µCT Images of Spongiosa from Different Bone Sites, Phys. Med. Biol., v. 52, p. 6697-6716, 2007. DOI: https://doi.org/10.1088/0031-9155/52/22/010
KRAMER, R.; KHOURY, H. J.; VIEIRA, J. W.; LIMA, V. J. M.; LOUREIRO, E. C. M.; HOFF, G.; KAWRAKOW, I. The FAX06 and the MAX06 Computational Voxel Phantoms, In Xu XG, Eckerman KF (eds.), Handbook of Anatomical Models for Radiation Dosimetry, 2010A, (Series in Medical Physics and Biomedical Engineering, CRC Press). DOI: https://doi.org/10.1201/EBK1420059793-c7
ANDRADE, P. H. A.; VIEIRA, J. W.; OLIVEIRA, V. R. S.; VELOSO, R. J. B.; LIMA, F. R. A. Um Método para Voxelização de Geometrias 3D de Malhas, Brazilian Journal of Radiation Sciences, v. 08-01A, p. 01-10, 2020. DOI: https://doi.org/10.15392/bjrs.v8i1A.1000
CASSOLA, V. F.; LIMA, V. J. M.; KRAMER, R.; KHOURY, H. J.; FASH and MASH: Fe-male and Male Adult Human Phantoms Based on Polygon Mesh Surfaces: I. Development of the Anatomy, Phys. Med. Biol., v. 55, p. 133-162, 2010. DOI: https://doi.org/10.1088/0031-9155/55/1/009
CASSOLA, V. F. Desenvolvimento de Fantomas Humanos Computacionais Usando Ma-lhas Poligonais em Função da Postura, Massa e Altura, Tese de Doutorado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2011.
LIMA, V. J. M. Desenvolvimento de Fantomas MESH Infantis, Morfologicamente Con-sistentes com a Anatomia Humana, para Uso em Dosimetria, Tese de Doutorado, Departa-mento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2011.
LIMA, V. J. M.; CASSOLA, V. F.; KRAMER, R.; LIRA, C. A. B. O.; KHOURY, H. J. Devel-opment of 5- and 10-Year-Old Pediatric Phantoms Based on Polygon MESH Surfaces, Med. Phys., v. 38 (8), 2011. DOI: https://doi.org/10.1118/1.3615623
CABRAL, M. O. M. Desenvolvimento de um Modelo Computacional de Exposição para Uso em Avaliações Dosimétricas em Gestantes, Dissertação de Mestrado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2015.
SANTOS, P. N. C. Simulação de um Tratamento Radioterápico Crânio-Espinhal em um Fantoma de Voxel Infantil Utilizando Espaços de Fase Representativos de um Acelerador Linear, Dissertação de Mestrado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2016.
VIEIRA, J. W.; CABRAL, M. O. M.; ANDRADE, P. H. A.; LEAL NETO, V.; LIMA, V. J. M.; LIMA FILHO, J. M.; LIMA. F. R. A. Uso do Software DIP para Voxelização de Fantomas MESH, In: V Congresso de Proteção Contra Radiações da Comunidade dos Países de Língua Portuguesa, Coimbra, 2016.
OLIVEIRA, A. C. H. Desenvolvimento de um Sistema Computacional Baseado no Código Geant4 para Avaliações Dosimétricas em Radioterapia, Tese de Doutorado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2016.
ANDRADE, P. H. A. Construção e Voxelização de um Fantoma MESH Masculino Adulto com Macro Circulação e Vasos Linfáticos, Tese de Doutorado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2018.
OLIVEIRA, E. S.; Estimativa da Dose Efetiva em Fantomas de Voxel para Indivíduos de 15 Anos, Dissertação de Mestrado, Departamento de Energia Nuclear, Universidade Federal de Pernambuco, Recife, Pernambuco, Brasil, 2021.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/