AQMI: Software for assessing the quality of mammographic images

Authors

  • Arthur Dantas Mangussi Universidade Federal de Ciências da Saúde de Porto Alegre
  • Thatiane Alves Pianoschi Universidade Federal de Ciências da Saúde de Porto Alegre
  • Bernardo Cecchetto Universidade Federal de Ciências da Saúde de Porto Alegre
  • Viviane Rodrigues Botelho Universidade Federal de Ciências da Saúde de Porto Alegre

DOI:

https://doi.org/10.15392/2319-0612.2023.2254

Keywords:

Mammography, Image quality, ACR, DICOM, Software

Abstract

Objective: AQMI - “Assessment of the quality of mammographic images” was developed to support the quality control (QC) of digital mammographic images. Materials and Methods: The software was implemented in the Python programming language via the Streamlit library, which involved content structuring and environmental planning. The experimental data that were selected from a public domain repository [19]. From the selected database, relevant information that was present in the DICOM file was studied to perform the image quality test. Then, from searching the literature, indicators that measure image quality were found, such as the signal-to-noise ratio, the contrast-to-noise ratio, figure of merit and image histogram. Results: AQMI assists in analyzing the image quality test established in IN 92 by the Agência Nacional de Vigilância Sanitária [8]. It also has quality addition indicators, trend graphs, and the image assessment history. Conclusion: For the functionalities of this work, the developed software is a promising tool for use in clinical practice, since it consists of a free, friendly, and easy-to-use interface.

Downloads

Download data is not yet available.

References

Cancer today . Available at: http://gco.iarc.fr/today/home. Last accessed on November 4, 2022.

MOHANTY, F. ; RUP, S. ; DASH, B. Automated diagnosis of breast cancer using parameter optimized kernel extreme learning machine. In : Biomed Signal Process Control, 2020.

MAULAZ, C. M.; VALENTINI, B. B.; MARQUES DA SILVA, A. M.; PAPALEO, R. M. Estudo Comparativo do Desempenho de Imagens por Ressonância Magnética, Mamografia e Ecografia na Avaliação de Lesões Mamárias Benignas e Malignas. In: Revista Brasileira de Física Médica, v.12, n.2, p.23-29, 2018.

SABINO, S. M. P. de S. Implantação de um programa de qualidade clínico da mamografia: análise da efetividade em um programa de rastreamento mamográfico. In: Hospital de Câncer de Barretos, 2014.

YAFFE, M. J. Developing a quality control program for digital mammography: achievements so far and challenges to come. In: Imaging in Medicine, v .3, p.123-133, 2011.

CHENG, H.D.; CAI, X.; CHEN, X.; HU, L.; LOU X. Computer-aided detection and classification of microcalfications in mammograms: a survey. In: Pattern Recignit, v.36, p. 2967-2991, 2003.

CALDAS, F. A. A. et al. Controle de qualidade e artefatos em mamografia. In: Radiologia Brasileira, v.38, n.4, p. 295-300, 2005.

ANVISA. Instrução Normativa n°92, 2021.

SOUZA, A. V. D.; NUNES, P. F. Controle de qualidade em mamografia digital: Uma revisão integrativa. – Florianópolis, SC, 2020. 54.p.

Lee, T.; TSAI, D.Y.; SHINOHARA, N. Computerized quantitative evaluation of mammographic accreditation phantom images. In: Medical Physics, v.37, n.12, p.6323-6331.

MAMMOGRAPHIC ACCREDITATION PHANTOM – GAMMEX 156. Disponível em: <https://www.supertechx-ray.com/BreastImagingandMammography/QCC/Gammex-156.php>. Último acesso 29 de agosto de 2022.

HENDRICK, R. E. et al. Quality Control Manual: Radiologist’s Section Clinical Image Section Radiologic Technologist’s Section Medical Physicist’s Section, 1999.

GOTO, R.E.; PIRES, S. R.; MEDEIROS, R.B. Hardcopy quality parameters to ensure structures detection at digital mammography. In: Radiologia Brasileira, v.46, n.3, p. 156-162, 2013.

MACIEL, V.N. Visualizador DICOM para auxílio em diagnóstico médico por imagem, 2016.

SAMPAIO, S.C. Modelagem e implementação orientada a objetos de um cliente de rede para banco de dados de imagens médicas digitais utilizando o padrão DICOM 3.0. Dissertação (Mestrado) - Universidade Federal de Santa Catarina, 1999.

CAVALCANTE, A.L.C. Fatores que influenciam na variação de dose nos exames mamográficos, Trabalho de Conclusão de Curso – Universidade Federal de Uberlândia, 2019.

VISANUYANONT, T.; GLUCHOWSKI, P.; HILLBERG, E.; et al. Automated QC for interventional systems and mammography systems. In: Radiation Protection Dosimetry, v.195, n.3-4, p.399-406, 2021.

STREAMLIT. The fast way to build and share data apps. Disponível em: https://streamlit.io. Último acesso em: 29 de agosto de 2022.

GUZMÁN, V.C.; RESTREPO, H.D.B.; HURTADO, E.S. Natural Scene Statistics of Mammography Accreditation Phantom Images. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), p. 1-5, 2019.

DICOM. DICOM PS3.1 2022D – Introduction and Overview. Disponível em: < https://dicom.nema.org/medical/dicom/current/output/html/part01.html>. Último acesso em: 20 de agosto de 2022

BUSHONG, S. C. Radiologic Science for Technologists EBook: Physics, Biology, and Protection. [n.a.]: Elsevier Health Sciences, 2016. 430493 p. ISBN 9780323429429.

SANDRIK, J. M. Helathcare G. GE Digital Mammography Systems, 2007.

NECZYPOR, M. R.; VILLA REAL, J.; BOCAMINO DORO, R. Avaliação da qualidade da imagem através da análise da relação sinal-ruído e contraste-ruído em um sistema de mamografia digital. Revista Brasileira de Física Médica, v. 15, p. 622, 2021.

BERNS, E. A. et al. Quality control manual : radiologist’s section radiologic technologist’s section medical physicist’s section, 2018.

XAVIER, A.C.S. Dosimetria e qualidade da imagem em mamografia digital. Dissertação (Mestrado) – Universidade Federal de Pernambuco, 2015

BORG, M. ; ROYLE, G.J. The use of figure-of-merit (FOM) for optimisation in digital mammography : aliterature review. In: Radiation Protection Dosimetry, v. 151, n.1, p.81-88, 2012.

YILDIRAY, Y.A. Histogram based Image Quality Index. Przeglad Elektrotechniczny, 2012.

Downloads

Published

2023-07-24

How to Cite

Mangussi, A. D., Pianoschi, T. A., Cecchetto, B., & Botelho, V. R. (2023). AQMI: Software for assessing the quality of mammographic images. Brazilian Journal of Radiation Sciences, 11(3), 1–16. https://doi.org/10.15392/2319-0612.2023.2254

Issue

Section

Articles

Most read articles by the same author(s)