Development of an acrylic emulsion paint added with cellulosic dispersion treated with an electron beam accelerator
DOI:
https://doi.org/10.15392/2319-0612.2023.2291Keywords:
Acrylic emulsion, Architectural paint, Ionizing radiation, Circular economy, SustainabilityAbstract
Paint is a prevalent type of surface of coating well known to most peoPaint is a prevalent type of surface of coating well known to most people. It is an easy-to-apply product, with excellent physical and chemical resistance and a wide range of applications. The function of a paint is to protect and beautify amongst other properties. Paints are formed using five components: resin, pigments, fillers, solvents and additives. This work deals with a specific type of paint, composed of a water-based acrylic emulsion, whose film formation is by coalescence and used to coat walls and other surfaces. The aim of this innovative research was to evaluate the effect of the addition of cellulosic dispersion of waste paper tissues treated by electron beam irradiation to an acrylic emulsion-based paint. The methodology used was a case study carried out at the Nuclear and Energy Research Institute that consisted of adding aqueous dispersions of cellulosic wipes with mass concentrations varying from 0.1% to 10% in deionized water, and treated by electron beam processing with absorbed doses from 5 kGy to 50 kGy. The results obtained followed the parameters of the Abrafati Sectorial Quality Program. The main sample parameters analyzed were specific density, which reached an average of 1.35 g/cm3; and covering power, whose value of 93.55% was above the specified limit (minimum of 90%). Among other results obtained, improvements in appearance, applicability and functionality were significant. It was concluded that this research constitutes an incremental improvement to the acrylic emulsion paints segment, and environmental sustainability, through the reuse of cellulosic tissue residues
- Views: 285
- PDF Downloads: 145
- XML Downloads: 45
Downloads
References
ABRAMOWSKA, A.; CIEŚLA, K.A. ; BUCZKOWSKI, M.J. ; NOWICKI, A. and GŁUSZEWSKI, W. "The influence of ionizing radiation on the properties of starch-PVA films" Nukleonika, v.60, n.3, p.669-677, 2015. Available at: < https://doi.org/10.1515/nuka-2015-0088. > Last accessed: ,15 Nov. 2022.
AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM D2565 - Standard Practice for Xenon-Arc Exposure of Plastics Intended for Outdoor Applications. USA, 2016. 7p.
AMERICAN SOCIETY FOR TESTING AND MATERIALS – ASTM G155 - Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials. USA, 2021. 12p.
ANGHINETTI, I.C.B. Tintas, suas propriedades e aplicações imobiliárias. Monografia apresentada ao Curso de Especialização em Construção Civil da Escola de Engenharia da UFMG. Belo Horizonte, 2012. Available at :<http://pos.demc.ufmg.br/novocecc/trabalhos/pg2/90.pdf> Last accessed: 16 Agu. 2022.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR5764: Amostragem de produtos químicos industriais líquidos de uma só fase. Rio de Janeiro, ABNT, 2012. 18p.
_______. NBR5829: Tintas, vernizes e derivados — Determinação da massa específica. Rio de Janeiro, ABNT, 2014. 2p
_______. NBR 10007: Amostragem de resíduos sólidos. Rio de Janeiro: ABNT, 2004
_______. NBR14942: Tintas para construção civil - Método para avaliação de desempenho de tintas para edificações não industriais - Determinação do poder de cobertura de tinta seca e rendimento teórico. Rio de Janeiro, ABNT, 2022. 10p.
_______. NBR14943: Tintas para construção civil - Método para avaliação de desempenho de tintas para edificações não industriais - Determinação do poder de cobertura de tinta úmida. Rio de Janeiro, ABNT, 2018. 5p.
_______. NBR15077: Tintas para construção civil - Método para avaliação de desempenho de tintas para edificações não industriais - Determinação da cor e da diferença de cor por medida instrumental. Rio de Janeiro, ABNT, 2004. 4p.
_______. NBR15380: Tintas para construção civil — Método para avaliação de desempenho de tintas para edificações não industriais — Resistência à radiação UV e à condensação de água pelo ensaio acelerado. Rio de Janeiro, ABNT, 2015. 9p.
_______. NBR15078: Tintas para construção civil - Método para avaliação de desempenho de tintas para edificações não industriais - Determinação da resistência à abrasão úmida sem pasta abrasiva. Rio de Janeiro, ABNT, 2006. 5p.
ASSOCIAÇÃO BRASILEIRA DOS FABRICANTES DE TINTAS (ABRAFATI). Available at :<http://www.abrafati.com.br/bn_conteudo_secao.asp?opr=94>. Last accessed: 30 Jul. 2022.
ASSOCIAÇÃO BRASILEIRA TÉCNICA DE CELULOSE E PAPEL (ABTCP). O setor de papel e celulose. Available at: <https://www.abtcp.org.br/quem-somos/osetor/o-setor>. Last accessed: 04 Agu. 2019.
CALVO, W. A. P.; DUARTE, C. L.; MACHADO, L. D. B.; MANZOLI, J. E.; GERALDO, A. B. C.; KODAMA, Y.; SILVA, L. G. A.; PINO, E. S.; SOMESSARI, E. S. R.; SILVEIRA, C. G.; Rela, P.R. Electron Beam Accelerators: Trends in Radiation Processing Technology for Industrial and Environmental Applications in Latin America and the Caribbean. Radiation Physics and Chemistry, v.81, p.1276-1281, 2012.
CLARK, J.H. et al. Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, v.18, n.14, p.3914-3934, 2016. Available at: < http://pubs.rsc.org/en/content/articlelanding/2016/gc/c6gc00501b#!divAbstract >. Last accessed 15 Nov. 2022.
DENANE, G.T; LAZARETI,C. ; NASCIMENTO, F.C. Incorporation of Polypropylene Waste Arising from Disposable Diapers Production for Manufacturing Automotive Parts. In: The Thirtieth International Conference on Solid Waste Technology and Management - Philadelphia, PA U.S.A. April 3-6, 2016.
LIZUNDIA,E et al . Cellulose nanocrystal based multifunctional nanohybrids. In : Progress in Materials Science, Volume 112, 2020, 100668, ISSN 0079-6425. https://doi.org/10.1016/j.pmatsci.2020.100668. Available at < (https://www.sciencedirect.com/science/article/pii/S0079642520300323)> Last accessed: 15 Nov. 2022
FAZENDA, J.M.R. Tintas e vernizes: ciência e tecnologia. São Paulo: ABRAFATI, 2009.
GASPAR, R. R.; SOMESSARI, S. L.; SPRINGER, F. E.; Feher, A.; DUARTE, C. L.; SAMPA, M. H. O.; LAINETTI, F. F.; BRAGA, A.; RODRIGUES, M.; CALVO, W. A. P. Developing an electrical power system of a mobile electron beam accelerator to treat wastewater and industrial effluents. Brazilian Journal of Development, v.7, p.102366-102379, 2021.
GŁUSZEWSKI, W. The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, v.60, n.3, p.669-677, 2015. Available at: < https://sciendo.com/it/article/10.1515/nuka-2015-0088> Last accessed: 03 Jan. 2023.
HUANG, Yanhui et al. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection. Progress in Organic Coatings, v. 138, p. 105210, 2020. Available at < https://www.sciencedirect.com/science/article/abs/pii/S0300944019301535. Last accessed: 28 July 28, 2023
NISKANEN,Ilpo et al. Determining the complex refractive index of cellulose nanocrystals by combination of Beer-Lambert and immersion matching methods. In : Journal of Quantitative Spectroscopy and Radiative Transfer,Volume 235, 2019, Pages 1-6,ISSN 0022-4073, https://doi.org/10.1016/j.jqsrt.2019.06.023. Available at < https://www.sciencedirect.com/science/article/pii/S0022407319301633 > Last accessed : 31 July 2023
Indústria Brasileira de Árvores (IBA) – Glossário sobre “papel tissue”. Available at: <https://iba.org/glossario>. Last accessed : 04 Agu. 2019.
LEDEZMA-ESPINOZA, A., et al. (2022). Environmental Technology & InnovationAvailable at :<10.1016/j.eti.2022.102483.> Last accessed : 03 Jan.2023.
MUNHOZ, P. M. ; NASCIMENTO, F. C. ; SILVA, L. G. A. ; HARADA, J. ; CALVO, W. A. P. . Influence of electron beam irradiation on the mechanical properties of pbat/pla polymeric blend / Influência da irradiação por feixe de electrões nas propriedades mecânicas da mistura polimérica pbat/pla. Brazilian Journal of Development, v.7, p.79528-79537, 2021.
NASCIMENTO, F.C. Mitigation of solid waste and reuse of effluent from paint and varnish automotive and industrial treated by irradiation at electron beam accelerator. In INAC – International Nuclear Atlantic Conference. 24 to 28 October, 2011. Belo Horizonte, MG – Brasil
NASCIMENTO, F.C. Treatment of industrial wastewater from paint industry by electron beam irradiation. In : RADTECH – International Congress. 29 April to 02 May, 2012. Chicago, USA.
NASCIMENTO, F.C. Tratamento de efluentes da produção de tintas industriais, automotivas e de repintura por irradiação com feixe de elétrons. 2013. Tese (Doutorado em Tecnologia Nuclear - Aplicações) - Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2013. Available at . Last accessed : 15 Nov. 2022.
OLIVEIRA, M.J. et all. Incorporation of waste from the production of disposable diapers in polypropylene for set-square manufacture polypropylene for set-square manufacture. In: ISWA BELGIUM, 2015.
PINO, E.S.; GIOVEDI, C. Radiação ionizante e suas aplicações na indústria. UNILUS Ensino e Pesquisa, v.2, n.2, p.47-52, 2013. Available at: <http://revista.lusiada.br/index.php/ruep/article/view/18>. Last accessed Acesso em: 15 Nov. 2022.
SHIMOKAWA, Tomoko et al. The effects of cellulose nanofibers compounded in water-based undercoat paint on the discoloration and deterioration of painted wood products. Journal of Wood Science, v. 67, p. 1-10, 2021. Available at < https://link.springer.com/article/10.1186/s10086-021-02007-0 > Last accessed on July 28, 2023
SITIVESP – Sindicato da Indústria de Tintas e Vernizes do Estado de São Paulo. Available at : >http://www.sitivesp.org.br/sitivesp/index.htm. Last accessed on: 15 Nov. 2022.
TEIXEIRA, Guilherme Silva. Análise comparativa da secagem de esmalte imobiliário pelo método normativo e por radiação micro-ondas. 2023. Trabalho de Conclusão de Curso. Universidade Tecnológica Federal do Paraná. Available at < <http://repositorio.utfpr.edu.br/jspui/handle/1/31862 > Last accessed on 28 July., 2023.
VIKTORYOVÁ, Nicolette; SZARKA, Agneša; HROUZKOVÁ, Svetlana. Recent developments and emerging trends in paint industry wastewater treatment methods. Applied Sciences, v. 12, n. 20, p. 10678, 2022. Available at < https://www.mdpi.com/2076-3417/12/20/10678 .> Last accessed 29 July ,2023.
ZHU, Xu et al. Multifunctional recycled wet wipe with negatively charged coating for durable separation of oil/water emulsion via interface charge emulsification. Separation and Purification Technology, v. 280, p. 119984, 2022. Available at < https://www.sciencedirect.com/science/article/abs/pii/S1383586621016907 > Last accessed 30 July, 2023.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/