An easy and direct protocol based on planar molecular images to quantify 131I using thyroid phantom
DOI:
https://doi.org/10.15392/2319-0612.2023.2325Keywords:
radionuclide imaging, nuclear medicine, radiologic phantom, thyroid gland, iodine therapyAbstract
A planar nuclear medicine image can be used to estimate dosimetry during iodine therapy. To this end, radionuclide activity distribution should be quantified in the patient’s body in terms of a calibration coefficient. This coefficient allows the net counts to correlate with the image’s activity. This study aims propose a simple and easy calibration protocol to quantify 131I activity in thyroid phantom by molecular planar images. Were acquired 13 planar images of different phantoms: thyroid phantom of symmetrical lobes; thyroid phantom of asymmetrical lobes; the Jacszack cylinder phantom with a syringe surrounded by air and water, and finally a plastic bottle containing a syringe with radionuclide. We applied the 131I radionuclide in a General Electric gamma camera, model Discovery NM/CT 670 with a high energy general purpose parallel hole collimator above the phantoms positioned at camera bed. The calibration coefficient of the gamma camera and the standard deviation were determined for each phantom; the average calibration coefficient obtained was 0.062±0.006 MBq/cps. The results suggested that the phantoms applied as too the calibration coefficient obtained by them can provides reasonable value for the gamma camera calibration factor for iodine 131, therefore an accurate evaluation of the scattering media as the source detector distance could impose higher variability and uncertainties on results.
- Views: 79
- PDF Downloads: 55
- XML Downloads: 5
Downloads
References
C. M. GOMES, A. J. ABRUNHOSA, P. RAMOS, AND E. K. J. PAUWELS, Molecular imaging with SPECT as a tool for drug development, Adv. Drug Deliv. Rev., vol. 63, no. 7, pp. 547–554, Jun. 2011, doi: 10.1016/j.addr.2010.09.015. DOI: https://doi.org/10.1016/j.addr.2010.09.015
D. A. MANKOFF, A definition of molecular imaging., J. Nucl. Med., vol. 48, no. 6, pp. 18N, 21N, Jun. 2007, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17536102
J. K. WILLMANN, N. VAN BRUGGEN, L. M. DINKELBORG, AND S. S. GAMBHIR, Molecular imaging in drug development, Nat. Rev. Drug Discov., vol. 7, no. 7, pp. 591–607, Jul. 2008, doi: 10.1038/nrd2290. DOI: https://doi.org/10.1038/nrd2290
A. S. RILEY, G. A. G. MCKENZIE, V. GREEN, G. SCHETTINO, R. J. A. ENGLAND, AND J. GREENMAN, The effect of radioiodine treatment on the diseased thyroid gland, Int. J. Radiat. Biol., vol. 95, no. 12, pp. 1718–1727, Dec. 2019, doi: 10.1080/09553002.2019.1665206. DOI: https://doi.org/10.1080/09553002.2019.1665206
F. XU, A. GU, Y. PAN, L. YANG, AND Y. MA, Analysis of iodine-131-induced early thyroid hormone variations in Graves’ disease, Nucl. Med. Commun., vol. 37, no. 11, pp. 1154–1159, 2016, doi: 10.1097/MNM.0000000000000570. DOI: https://doi.org/10.1097/MNM.0000000000000570
J. DER LIN, S. F. KUO, B. Y. HUANG, S. F. LIN, AND S. T. CHEN, The efficacy of radioactive iodine for the treatment of well-differentiated thyroid cancer with distant metastasis, Nucl. Med. Commun., vol. 39, no. 12, pp. 1091–1096, 2018, doi: 10.1097/MNM.0000000000000897. DOI: https://doi.org/10.1097/MNM.0000000000000897
J. WEVRETT, A. FENWICK, J. SCUFFHAM, AND A. NISBET, Development of a calibration protocol for quantitative imaging for molecular radiotherapy dosimetry, Radiat. Phys. Chem., vol. 140, pp. 355–360, Nov. 2017, doi: 10.1016/j.radphyschem.2017.02.053. DOI: https://doi.org/10.1016/j.radphyschem.2017.02.053
J. A. SIEGEL et al., MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates., J. Nucl. Med., vol. 40, no. 2, pp. 37S-61S, Feb. 1999.
Y. K. DEWARAJA et al., MIRD Pamphlet No. 24: Guidelines for Quantitative 131I SPECT in Dosimetry Applications, J. Nucl. Med., vol. 54, no. 12, pp. 2182–2188, Dec. 2013, doi: 10.2967/jnumed.113.122390. DOI: https://doi.org/10.2967/jnumed.113.122390
D. L. FRANZÉ, Dosimetria por imagem para o planejamento específico por paciente em iodoterapia, Dissertação de Mestrado, Universidade de São Paulo, 2016.
R. A. D. CERQUEIRA AND A. F. MAIA, Development of thyroid anthropomorphic phantoms for use in nuclear medicine, Radiat. Phys. Chem., vol. 95, pp. 174–176, Feb. 2014, doi: 10.1016/j.radphyschem.2012.12.038. DOI: https://doi.org/10.1016/j.radphyschem.2012.12.038
Quality Control of Nuclear Medicine Instruments 1991, no. 602. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 1991. [Online]. Available: https://www.iaea.org/publications/858/quality-control-of-nuclear-medicine-instruments-1991
Quality Assurance for Radioactivity Measurement in Nuclear Medicine, no. 454. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2006. [Online]. Available: https://www.iaea.org/publications/7480/quality-assurance-for-radioactivity-measurement-in-nuclear-medicine
R. BARQUERO et al., 131I activity quantification of gamma camera planar images, Phys. Med. Biol., vol. 62, no. 3, pp. 909–926, 2017, doi: 10.1088/1361-6560/62/3/909. DOI: https://doi.org/10.1088/1361-6560/62/3/909
R. BARQUERO et al, Procedimientos recomendados de dosimetría de pacientes en tratamientos de hipertiroidismo con I-131. Grupo de trabajo de dosis tras la administración de radiofármacos de la Sociedad Española de Física Médica. Revista De Física Médica, 18(2) pp. 143–176, 2017
H. HÄNSCHEID et al., EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases, Eur. J. Nucl. Med. Mol. Imaging, vol. 40, no. 7, pp. 1126–1134, Jul. 2013, doi: 10.1007/s00259-013-2387-x. DOI: https://doi.org/10.1007/s00259-013-2387-x
Y. K. DEWARAJA, M. LJUNGBERG, AND K. F. KORAL, Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging., J. Nucl. Med., vol. 41, no. 1, pp. 123–30, Jan. 2000,
J. M. BLAND AND D. G. ALTMAN, Statistical methods for assessing agreement between two methods of clinical measurement., Lancet (London, England), vol. 1, no. 8476, pp. 307–10, Feb. 1986 DOI: https://doi.org/10.1016/S0140-6736(86)90837-8
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/