Evaluation of radiation damage exposure for low alloy steel in J-9 irradiation channel of Argonauta reactor

Authors

  • Jonnathan Ogihara Instituto Militar de Engenharia
  • Pedro Benevides Ribeiro da Silva
  • Fernando Manuel Araújo Moreira

DOI:

https://doi.org/10.15392/2319-0612.2023.2342

Keywords:

Nuclear Safety, Materials, Radiation Damage, Radiation Effects, Displacement per atom

Abstract

The operation of nuclear facilities must satisfy the nuclear safety requirements. An analysis of the components of these facilities focuses on the structural materials. In this scenario, several types of alloys are employed in their construction. The nuclear fuel burn-up will result in damage caused by ionizing radiation. Due to continuous operation, radiation damage will build up and may result in the manifestation of macroscopic radiation effects. Such effects may change the mechanical, physical and chemical properties of structural alloys. Thus, it is verified the importance of the material behavior predictability to avoid reduction in performance or failure in these types of facilities. In order to study these effects, it’s necessary to calculate the displacement per atom (dpa) in the material. This calculation was estimated for the reactor Argonauta’s irradiation channel J-9 for low alloy steel. An ideal situation with a harder neutron spectrum was calculated to analyze the results. The dpa rate calculated in that facility was attributed to the low neutron energy fluence.

Downloads

Download data is not yet available.

References

COMISSÃO NACIONAL DE ENERGIA NUCLEAR. CNEN: Glossário do setor nuclear e radiológico brasileiro. Rio de Janeiro, 2020. 50 p.

BUSBY, J. T. Overview of structural material in water-cooled fission reactor. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdan: Elsevier, 2019. p. 1–21.

ZINKLE, S. J.; WAS, G. S. Materials challenge in nuclear energy. Acta Materialia, v. 61, n. 3, p. 735–758, 2013.

ALLEN, T.; BUSBY, J.; MEYER, M.; PETTI, D. Materials challenge for nuclear systems. Materials Today, v. 13, n. 12, p. 14–23, 2010.

MURTY, K. L.; CHARIT, I. An Introduction to Nuclear Materials - Fundamentals and Applications. 1. ed. Weinheim: Wiley-VCH, 2013. 382 p.

WAS, G. S. Fundamentals of Radiation Materials Science - Metals and Alloys. 1. ed. Heidelberg: Springer Berlin, 2007. 827 p.

ZINKLE, S. J.; TANIGAWA, H.; WIRTH, B. D. Radiation and thermomechanical degradation effects in reactor structural alloys. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier, 2019. p. 163–210.

HASHIMOTO, N.; BYUN, T. S.; FARRELL, K. Microstructural analysis of deformation in neutron-irradiated fcc materials. Journal of Nuclear Materials, v. 351, n. 1-3, p. 295–302, 2006.

AMERCIAN ASSOCIATY FOR TESTING AND MATERIALS. ASTM E693-23: Standard practice for characterizing neutron exposures in iron and low alloy steels in terms of displacement per atom (dpa). West Conshohocken, 2023. 8 p.

GREENWOOD, L. R. Neutron interactions and atomic recoil spectra. Journal of Nuclear Materials, v. 215, p. 29–44, 1994.

KONOBEYEV, A. Yu; FISCHER, U.; SIMAKOV, S. P. Atomic displacement cross-sections for neutron irradiation of materials from Be to Bi using the arc-dpa model. Nuclear Engineering and Design, v. 51, n. 1, p. 170–175, 2018.

WILLIAMS, T.; NANSTAD, R. Low-alloy steels. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier, 2019. p. 163–210.

SOUZA, E. S. Caracterização de um sistema digital de aquisição de imagens radiográficas utilizando nêutrons térmicos e raios gama para inspeção de componentes mecânicos. 123 p. Mestrado em Engenharia Mecânica — Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012. 25 jul. de 2023. Avaiable at: <https://www.bdtd.uerj.br: 8443/handle/1/11699>.

VOI, D. L. Estudo da estrutura e da dinâmica moleculares da baquelite através de medidas de seções de choque para nêutrons. 104 p. Doutorado em Ciências em Engenharia Nuclear e Planejamento Energético — Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1990. 16 jun. de 2023. Avaiable at: <https://www.osti.gov/etdeweb/servlets/ purl/65440>.

CUNHA, V. L. L. Simulação do Reator Argonauta do IEN Utilizando o Código MCNPX. 61 p. Mestrado em Engenharia Nuclear — Instituto Militar de Engenharia, Rio de Janeiro, 2010. Avaiable at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/072/49072011.pdf>.

OLANDER, D.R.; Fundamental Aspect of Nuclear Reactor Fuel Elements. Springfield, United State Department of Commerce, 1976, p. 613.

DUDERSTADT, J. J.; HAMILTON, L. J. Nuclear Reactor Analysis. 1. ed. New York: John Wiley and Sons, 1976. 650 p.

Downloads

Published

2023-12-27

How to Cite

Ogihara, J., Benevides Ribeiro da Silva, P., & Araújo Moreira, F. M. (2023). Evaluation of radiation damage exposure for low alloy steel in J-9 irradiation channel of Argonauta reactor. Brazilian Journal of Radiation Sciences, 11(4), 01–14. https://doi.org/10.15392/2319-0612.2023.2342

Issue

Section

Articles