Evaluation of radiation damage exposure for low alloy steel in J-9 irradiation channel of Argonauta reactor
DOI:
https://doi.org/10.15392/2319-0612.2023.2342Keywords:
Nuclear Safety, Materials, Radiation Damage, Radiation Effects, Displacement per atomAbstract
The operation of nuclear facilities must satisfy the nuclear safety requirements. An analysis of the components of these facilities focuses on the structural materials. In this scenario, several types of alloys are employed in their construction. The nuclear fuel burn-up will result in damage caused by ionizing radiation. Due to continuous operation, radiation damage will build up and may result in the manifestation of macroscopic radiation effects. Such effects may change the mechanical, physical and chemical properties of structural alloys. Thus, it is verified the importance of the material behavior predictability to avoid reduction in performance or failure in these types of facilities. In order to study these effects, it’s necessary to calculate the displacement per atom (dpa) in the material. This calculation was estimated for the reactor Argonauta’s irradiation channel J-9 for low alloy steel. An ideal situation with a harder neutron spectrum was calculated to analyze the results. The dpa rate calculated in that facility was attributed to the low neutron energy fluence.
- Views: 77
- PDF Downloads: 51
- XML Downloads: 1
Downloads
References
COMISSÃO NACIONAL DE ENERGIA NUCLEAR. CNEN: Glossário do setor nuclear e radiológico brasileiro. Rio de Janeiro, 2020. 50 p.
BUSBY, J. T. Overview of structural material in water-cooled fission reactor. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdan: Elsevier, 2019. p. 1–21.
ZINKLE, S. J.; WAS, G. S. Materials challenge in nuclear energy. Acta Materialia, v. 61, n. 3, p. 735–758, 2013.
ALLEN, T.; BUSBY, J.; MEYER, M.; PETTI, D. Materials challenge for nuclear systems. Materials Today, v. 13, n. 12, p. 14–23, 2010.
MURTY, K. L.; CHARIT, I. An Introduction to Nuclear Materials - Fundamentals and Applications. 1. ed. Weinheim: Wiley-VCH, 2013. 382 p.
WAS, G. S. Fundamentals of Radiation Materials Science - Metals and Alloys. 1. ed. Heidelberg: Springer Berlin, 2007. 827 p.
ZINKLE, S. J.; TANIGAWA, H.; WIRTH, B. D. Radiation and thermomechanical degradation effects in reactor structural alloys. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier, 2019. p. 163–210.
HASHIMOTO, N.; BYUN, T. S.; FARRELL, K. Microstructural analysis of deformation in neutron-irradiated fcc materials. Journal of Nuclear Materials, v. 351, n. 1-3, p. 295–302, 2006.
AMERCIAN ASSOCIATY FOR TESTING AND MATERIALS. ASTM E693-23: Standard practice for characterizing neutron exposures in iron and low alloy steels in terms of displacement per atom (dpa). West Conshohocken, 2023. 8 p.
GREENWOOD, L. R. Neutron interactions and atomic recoil spectra. Journal of Nuclear Materials, v. 215, p. 29–44, 1994.
KONOBEYEV, A. Yu; FISCHER, U.; SIMAKOV, S. P. Atomic displacement cross-sections for neutron irradiation of materials from Be to Bi using the arc-dpa model. Nuclear Engineering and Design, v. 51, n. 1, p. 170–175, 2018.
WILLIAMS, T.; NANSTAD, R. Low-alloy steels. In:_____. Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier, 2019. p. 163–210.
SOUZA, E. S. Caracterização de um sistema digital de aquisição de imagens radiográficas utilizando nêutrons térmicos e raios gama para inspeção de componentes mecânicos. 123 p. Mestrado em Engenharia Mecânica — Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2012. 25 jul. de 2023. Avaiable at: <https://www.bdtd.uerj.br: 8443/handle/1/11699>.
VOI, D. L. Estudo da estrutura e da dinâmica moleculares da baquelite através de medidas de seções de choque para nêutrons. 104 p. Doutorado em Ciências em Engenharia Nuclear e Planejamento Energético — Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1990. 16 jun. de 2023. Avaiable at: <https://www.osti.gov/etdeweb/servlets/ purl/65440>.
CUNHA, V. L. L. Simulação do Reator Argonauta do IEN Utilizando o Código MCNPX. 61 p. Mestrado em Engenharia Nuclear — Instituto Militar de Engenharia, Rio de Janeiro, 2010. Avaiable at: https://inis.iaea.org/collection/NCLCollectionStore/_Public/49/072/49072011.pdf>.
OLANDER, D.R.; Fundamental Aspect of Nuclear Reactor Fuel Elements. Springfield, United State Department of Commerce, 1976, p. 613.
DUDERSTADT, J. J.; HAMILTON, L. J. Nuclear Reactor Analysis. 1. ed. New York: John Wiley and Sons, 1976. 650 p.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/