DOSE RATE IN A DEACTIVATED URANIUM MINE

Authors

  • Wagner De Souza Pereira Indústrias Nucleares do Brasil; Universidade Veiga de Almeida Curso de Pós-Graduação em Ciências do Meio Ambiente
  • Alphonse Kelecom Universidade Federal Fluminense
  • Ademir Xavier da Silva UFRJ
  • José Marquez Lopes Universidade Federal do Rio de Janeiro
  • Alessander Sá do Carmo Universidade Federal do Rio de Janeiro
  • Ayandra Oliveira Dias universidade Veiga de Almeida
  • Carlos Eduardo Cogo Pinto Universidade Veiga de Almeida

DOI:

https://doi.org/10.15392/bjrs.v7i2B.523

Keywords:

Dose Rate, Uranium Mine, radioprotection

Abstract

The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in µSv∙h-1, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month-1, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 µSv∙h-1 associated to a standard deviation of 48 µSv∙h-1 with a maximum recorded value of 685 µSv∙h-1. 96 % of the samples were below the derived limit per hour for workers (10 µSv∙h-1). For the personal electronic monitoring, the average of the data sampled was 15.86 µSv∙h-1, associated to a standard deviation of 61.74 µSv∙h-1. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 µSv∙h-1. Finally, the TLD showed a mean of 0.01 mSv∙h-1 (TLD detection limit is 0.2 mSv∙month-1 equivalent to 0.28 µSv∙h-1), associated to a standard deviation of 0.08 mSv∙h-1. 98% of the registered values were below 0.2 mSv∙month-1 and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all risk operations, even with the use of the TLD.

Downloads

Download data is not yet available.

Author Biographies

Wagner De Souza Pereira, Indústrias Nucleares do Brasil; Universidade Veiga de Almeida Curso de Pós-Graduação em Ciências do Meio Ambiente

Biológo UFRRJ), com especialização em ciências do Ambiente (UFRRJ), especialização em biologia marinha (Radioecologia marinha - UFF), mestrado em biomar (Radioecologia ,Marinha - UFF) doutor em Biomar (radioproteção ambiental). Supervisor de radioproteção nas práticas de: 1) Mineração e beneficiamento físico, químico e metalúrgicode minérios com U ou Th associados, 2) Mineração de Beneficiamento físico e químico de urânio e/ou tório, gerencia de rejeitos radioativos, perfilagem de poços de petróleo e medidores nucleares. registrado para uso de pequenas quantidades de radioisótopos em pesquisa. Atua no treinamento em radioproteção e formação de supervisores. avaliação de dose via análise de excretas. monitoração radiologica ambiental associada a minas de urânio. monitoração ocupacional em minas de urânio. Radioproteção ocupacional e ambiental, radioecologia.modelagem de cálculo de dose, de dispersão ambiental de radionuclídeos. Atualmente trabalho no laboratório de monitoração ambiental, no serviço de radioproteção da Unidade de Tratamento de Minérios da INB.

Carlos Eduardo Cogo Pinto, Universidade Veiga de Almeida

Licenciado em Quimica, M. Sc em Meio Ambiente, Mestardo Profissional em Meio Ambiente - MPCA - UVA

References

CNEN. “Diretrizes Básicas de Proteção Radiológica,” Comissão Nacional de Energia Nuclear, 2014.

TRIPATHI, R. M.; SAHOO, S. K.; JHA, V. N.; KHAN, A. H.; PURANIK, V. D. “ As-sessment of Environmental Radioactivity at Uranium Mining, Processing and Tailimgs Management Facility at Jaduguda, India,” Applied Radiation and Isotopes, 2008: 1666-1670.

OYEDELE, J. A.; SHIMBOYO, S. SITOKA, S; GAOSEB, F. “Assessment of Natural Radioactivity in the Soils of Rössing Uranium Mine and its Satellite Town in Western Namibia, Southern Africa,” Nuclear Instruments and Methods in Physics Research A, 2010: 467-469.

RACHAVENDRA, T.; RAMAKRISHNA, S. U.; VIJAYALAKSHMI, T.; ARU-NACHALA, J. “Assessment of Randos Concentration and External Gamma Radiation Level in the Environs of the Proposed Uranium Mine at Peddagattu and Seripally Re-gions, Andhra Pradesh, India,” Journal of Radiation Research and Applied, 2014: 269-273.

SRINIVAS, D.; RAMESH BABU, V.; PATRA, I.; RAMAYYA, M.; SHAILESH TRIPATHI, S.; CHATURVEDI, A. K. “Assessment of Background Gamma Radiation Levels Using Airbone Gamma Ray Spectrometer Data over Uranium Deposits, Cuddapah Basin, India and a Comparative Study of Dose Rates Estimated by AGRS and PGRS,” Journal of Environment Radioactivity, 2017: 1-12.

MATOS, E. C.; RUBINI, L. A. “Reservas Brasileiras de Urânio e Sua Capacidade de Atendimento à Demanda Interna,” VII CGEN – Congresso Geral de Energia Nuclear, 1999.

CIPRIANI, M. Mitigação dos impactos sociais e ambientais decorrentes do fechamento definitivo de minas de urânio.Tese de doutorado, Campinas, São Paulo, (2002).

LESPUKH, E. et al. “Assessment of the Radiological Impact of Gamma and Randon Dose Rates at Former U Mining sites in Tajikistan,” Journal of Environmental Radioac-tivity, 2013: 147-155.

KARUNAKARA, N. et al. “Assessment of Ambient Gamma Dose Rate Around a Pro-spective Uranium Mining Area of South India – A Comparative Study of Dose by direct Methods and Soil Radioactivity Measurements,” Results in Physics, 2014: 20-27.

CNEN. “Descomissionamento de Usinas Nucleoelétricas,” Comissão Nacional de Energia Nuclear, 2012.

PEREIRA, W. S.; KELECOM, A.; PEREIRA, J. R. S.; PY JÚNIOR, D. A. “Release of Uranium by an Ore Treatment Unit at Caldas, MG, Brazil,” Journal of Environment Pro-tection, 2013: 570-574.

CNEN. “Critérios para Cálculo de Dose Efetiva a partir da Monitoração Individual,” Comissão Nacional de Energia Nuclear, 2011.

INB (Indústrias Nucleares do Brasil), Plano de proteção radiológica do Complexo Minero Industrial Do Planalto De Poços De Caldas (CIPC), 56 pp, (1986).

INB (Indústrias Nucleares do Brasil), Plano de proteção radiológica da Unidade de Tra-tamento de Minério, em condição de área parada, 26 pp, (2002).

INB (Indústrias Nucleares do Brasil), Plano de proteção radiológica ocupacional da uni-dade de tratamento de minérios – UTM, 46 pp, (2012).

KHATER, A. E; HUSSEIN, M. A; HUSSEIN, M. I; “Occupational exposure of phos-phate mine workers: airborne radioactivity measurements and dose assessment”, Journal of Environmental Radioactivity, 2004: 47–57.

ALM-LYTZ, K; RIIHILUOMA, V; HYVÖNEN, H; “Occupational exposures of nuclear power plant workers in Finland”, Radiation Protection Dosimetry, 2001: 39–42.

PAKRAVAN, A. H; AGHAMIRI, S. M. R; BAMDADIAN, T; GHOLAMI, M; MOSHFEGHI, M; Dosimetry of occupational radiation around panoramic X-ray appa-ratus”. J Biomed Phys Eng

FRIEDBERG, W; COPELAND, K; DUKE, F. E; O’BRIEN, K; EDGAR B. DARDEN, E. B; “Radiation exposure during air travel: guidance provided by the federal aviation administration for air carrier crews”, Health Physics, 2000: 591-595.

Downloads

Published

2019-06-25

How to Cite

Pereira, W. D. S., Kelecom, A., da Silva, A. X., Lopes, J. M., do Carmo, A. S., Dias, A. O., & Pinto, C. E. C. (2019). DOSE RATE IN A DEACTIVATED URANIUM MINE. Brazilian Journal of Radiation Sciences, 7(2B (Suppl.). https://doi.org/10.15392/bjrs.v7i2B.523

Issue

Section

XX Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XX ENFIR)

Most read articles by the same author(s)