The effect of gamma radiation on the structure of graphene oxide and graphene oxide functionalized with amino-PEG

Authors

  • Jaqueline Jamara Souza Soares IPEN - Nuclear and Energy Research Institute
  • Raynara Maria Silva Jacovone IPEN - Nuclear and Energy Research Institute
  • Paulo SOUZA Santos IPEN - Nuclear and Energy Research Institute
  • Márcio Henrique Zaim University of São Paulo
  • Dalva Lucia Araújo Faria University of São Paulo
  • Solange Kazumi Sakata IPEN - Nuclear and Energy Research Institute

DOI:

https://doi.org/10.15392/bjrs.v7i3.837

Keywords:

Functionalization, nanocomposite, graphene oxide.

Abstract

ABSTRACT

 

Covalent functionalization of graphene oxide (GO) with polyethylene glycol (PEG) has been widely used in drug delivery systems. This nanocomposite exhibits excellent stability in the presence of high concentrations of salts and proteins and shows low toxicity compared to its raw form. However, must be sterilized prior to use in medical devices, and the gamma irradiation shows a promising option for this purpose. Sterilization by ionizing energy through gamma rays, generated by Cobalt-60 self-disintegration, consists in exposing the materials to short electromagnetic waves. The irradiation process provides substantial advantages when compared to thermal and chemical processes such as more precise control of the process, lower energy consumption, and less environmental pollution. In this work the effects of gamma radiation on GO and GO functionalized com Amino-PEG (GO-PEG-NH2) irradiated with doses (15, 25, 35 and 50 kGy) that have been used to sterilize medical devices and at rate dose 7.3 kGy.h-1 were evaluated. The analyses were performed by Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The results showed that gamma radiation up to 50 kGy did  not cause any defects on the nanomaterials.

 

Downloads

Download data is not yet available.

Author Biographies

Jaqueline Jamara Souza Soares, IPEN - Nuclear and Energy Research Institute

Center for Radiation Technology - CTR (IPEN)

Raynara Maria Silva Jacovone, IPEN - Nuclear and Energy Research Institute

Center for Radiation Technology - CTR (IPEN)

Paulo SOUZA Santos, IPEN - Nuclear and Energy Research Institute

Center for Radiation Technology - CTR (IPEN)

Márcio Henrique Zaim, University of São Paulo

Institute of Chemistry

Dalva Lucia Araújo Faria, University of São Paulo

Institute of Chemistry

Solange Kazumi Sakata, IPEN - Nuclear and Energy Research Institute

Center for Radiation Technology - CTR (IPEN)

References

MEHL H.; MATOS F. C.; NEIVA E. G.; DOMINGUES S. H.; ZARBIN A. J. G. Efeito da variação de parâmetros reacionais na preparação de grafeno via oxidação e redução do grafite. Química Nova, v.37, n°10, pp.1639-1645, (2014).

GULZAR A.; YANG P.; HEI F.; XU J.; YANG D.; XU L.; JAN M. O. Bioapplications of graphene constructed functional nanomaterials, Chemico-Biological Interactions, v.262, pp.69-89, (2017).

NISHIDA E.; TAKITA H.; KANAYAMA I.; TSUJI M.; AKASAKA T.; SUGAYA T.; SAKAGAMI R.; KAWANAMI M. Graphene oxide coating facilitates the bioactivity of scaffold material for tissue engineering. Japanese Journal of Applied Physics, v.53, 13 May. (2014).

ZHANG Y.; NAYAK T. R.; HONG H.; CAI W. Graphene: a versatile nanoplatforms for biomedical applications. Nanoscale, v.4, pp.3833-3842, (2012).

KRISHNA K. V.; MÉNARD M.; VERMA S.; BIANCO A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine, v.8, pp.1669–1688, (2013).

XU Z.;WANG S.; LI Y.; WANG M.; HUANG P. Shi. Covalent functionalization of graphene oxide with biocompatible poly (ethylene glycol) for delivery of paclitaxel. Applied materials e interfaces, v.6, pp.17268-17276, (2014).

FENG L.; LIU Z.; Graphene in biomedicine: opportunities and challenges. Nanomedicine, v.6, pp. 317-324, (2011).

CLELAND M. L.; Industrial Applications of Electron Accelerators, Ion beam applications. IBA Technology Group 151, New York. (2005).

HUMMERS W. S.; OFFERMAN R. E.; Preparation of graphitic oxide. J. Am. Chem. Soc., v.80, pp.1339–1339, (1958).

MUTTER M.; Soluble polymers in organic synthesis: I. Preparation of polymer reagents using polyethylene glycol with terminal amino groups as polymeric component. Tetrahedron Letters, Germany, n.31, pp.2839-2842 (1978).

YANG K.; FENG L.; HONG H.; CAI W.; LIU Z.; Preparation and functionalization of graphene nanocomposites for biomedical applications. Nature Protocols, v.8, n.12, (2013).

COLLINS C. J. Reactions of primary aliphatic amines with Nitrous acid. Advan. Chem. Phys, v.4, (1970).

AWASTHI G.; KUMAR A.; SANGUI A.; SINGH S. S. Biochemical Laboratory Manual, International E-Publication, pp. 30-31, (2013).

ZHAO J.; LIU L.; LI F.; Graphene Oxide: Physics and Applications. London: Springer, 161 p. (2015).

GEORGAKILAS V. Functionalization of graphene. Wiley-VCH, p.426, (2014).

KING A. A. K.; DAVIES B. R.; NOORBEHESHT N.; NEWMAN P.; CHURCH T. L.; HARRIS A. T.; RAZAL J. M.; MINETT A. I. Characterization of Graphene oxide and its derivatives. Scientific Reports, (2016).

CANÇADO L. G.; JORIO A.; FERREIRA E. H. M.; STAVALE F.; ACHETE C. A.; CAPAZ R. B.; MOUTINHO M. V. O.; LOMBARDO A.; KULMALA T.; FERRARI A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies, v.2, (2011).

Downloads

Published

2019-07-04

How to Cite

Soares, J. J. S., Jacovone, R. M. S., Santos, P. S., Zaim, M. H., Faria, D. L. A., & Sakata, S. K. (2019). The effect of gamma radiation on the structure of graphene oxide and graphene oxide functionalized with amino-PEG. Brazilian Journal of Radiation Sciences, 7(3). https://doi.org/10.15392/bjrs.v7i3.837

Issue

Section

Articles