Thermal degradation and spectroscopy characterizations of TPS/PBAT blends irradiated by Cobalt-60 source

Authors

DOI:

https://doi.org/10.15392/bjrs.v10i3.2046

Keywords:

Biodegradable polymers, Blends, Irradiation process

Abstract

This study aimed to prepare blends of natural polymers of TPS with PBAT by reactive extrusion with irradiation process, using the plasticizers (castor oil and glycerol) to evaluate the thermal and chemical properties. The blends were submitted to the irradiation process using a Cobalt-60 source at a 25 kGy dose and then characterized by FTIR and DSC analysis. According to the results obtained in the FTIR tests, the blends did not undergo chemical changes during the irradiation process and, thus, maintained their properties. In the DSC tests, it was observed that the blends F2 (castor oil) and F3 (castor oil and TWEEN® 80) showed higher values of heat flow for degradation than the samples F0 (glycerol) and F1 (glycerol and TWEEN® 80), probably due to the chemical interaction of castor oil and its constituents. There was no thermal variation in the irradiation process between blends F0 and F1 or F2 and F3. It was concluded that it is feasible to replace castor oil with glycerol in TPS/PBAT blends, and the irradiation using a Cobalt-60 source, not changed the final properties analyzed.

Downloads

Download data is not yet available.

References

ABRAMOWSKA, A.; CIEŚLA K. A.; BUCZKOWSKI, M. J.; NOWICKI, A.; GŁUSZEWSKI, W. The influence of ionizing radiation on the properties of starch-PVA films. Nukleonika, v. 60, n. 3, p. 669-677, 2015. DOI: https://doi.org/10.1515/nuka-2015-0088

American Society for Testing and Materials. Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities, ASTM 2012. (ASTM D 6400-12).

HWANG, I. T.; CHAN-HEE, J.; IN-CHOI, K.; JAE-HAK, C.; YOUNG-CHANG, N. Electron beam-induced crosslinking of poly(butylene adipate-co-terephthalate). Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, v. 268, n. 21, p. 3386-3389, 2010. DOI: https://doi.org/10.1016/j.nimb.2010.08.010

AKHAVAN, A.; KHOYLOU, F.; ATAEIVARJOVI, E. Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films. Radiation Physics and Chemistry, v. 138, p. 49-53, 2017. DOI: https://doi.org/10.1016/j.radphyschem.2017.02.057

ZHU, F. Impact of gamma-irradiation on structure, physicochemical properties, and applications of starch. Food Hydrocolloids, v. 52, p. 201-212, 2016. DOI: https://doi.org/10.1016/j.foodhyd.2015.05.035

NEMTANU, M. R.; BRASOVEANU, M. Degradation of amylose by ionizing radiation processing. Starch-Starke, v. 69, n. 3-4, p. 9, 2017. DOI: https://doi.org/10.1002/star.201600027

ATROUS, H.; BENBETTAIEB, N.; HOSNI, F.; DANTHINE, S.; BLECKER, C.; ATTIA, H.; GHORBEL, D. Effect of gamma-radiation on free radicals formation, structural changes and functional properties of wheat starch. International Journal of Biological Macromolecules, v. 80, p. 64-76, 2015. DOI: https://doi.org/10.1016/j.ijbiomac.2015.06.014

NUNES, M. R. S.; MARTINELLI, M.; PEDROSO, M. M. Epoxidação do óleo de mamona e derivados empregando o sistema catalítico VO(acac)2/TBHP#. Química Nova, v. 31, n. 4, p. 818-821, 2008. DOI: https://doi.org/10.1590/S0100-40422008000400021

SATHISKUMAR, P. S.; MADRAS, G. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polymer Degradation and Stability, v. 96, n. 9, p. 1695-1704, 2011. DOI: https://doi.org/10.1016/j.polymdegradstab.2011.07.002

AGUILERA-MIGUEL, A.; LÓPEZ-GONZALEZ, E.; SADTLER, V.; DURAND, A.; MARCHAL, P.; CASTEL, C.; CHOPLIN, L. Hydrophobically modified dextrans as stabilizers for O/W highly concentrated emulsions. Comparison with commercial non-ionic polymeric stabilizers. Colloids and Surfaces a-Physicochemical and Engineering Aspects, v. 550, p. 155-166, 2018. DOI: https://doi.org/10.1016/j.colsurfa.2018.04.022

GARCIA, P. S.; TURBIANI, F. R. B.; BARON, A. M.; BROZOLA, G. L.; TAVARES, M. A.; YAMASHITA, F.; EIRAS D.; GROSSMANN, M. V. E. Sericin as compatibilizer in starch/ polyester blown films. Polímeros, v. 28(5), p. 389-394, 2018. DOI: https://doi.org/10.1590/0104-1428.05117

KUMAR, P.; PRAKASH, K. S.; JAN, K.; SWER , T. L.; JAN, S.; VERMA, R.; DEPPIKA, K.; DAR, M. Z. ; VERMA, K.; BASHIR, K. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. Journal of Cereal Science, v. 77, p. 194-200, 2017. DOI: https://doi.org/10.1016/j.jcs.2017.08.017

OLIVEIRA, C. F. de P. Obtenção e caracterização de amido termoplástico e de suas misturas com polipropileno. 2015. Thesis (Metallurgical and Materials Engineering) - Escola Politécnica, University of São Paulo, São Paulo, 2015.

CASTRO D. P.; SARTORI, M. N.; ANDRADE E SILVA, L. G. Effects of Gamma Radiation on the Properties of the Thermoplastic Starch/Poly (Butylene Adipate-co-Terephthalate) Blends. Materials Research, v. 22, e20190072, 2019. DOI: https://doi.org/10.1590/1980-5373-mr-2019-0072

WELLEN, R. M. R.; RABELLO, M. S.; FECHINE, G. J. M.; CANEDO, E. L. The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polymer Testing, v. 32, n. 2, p. 215-220, 2013. DOI: https://doi.org/10.1016/j.polymertesting.2012.11.001

Downloads

Published

2022-09-18

Issue

Section

Articles

How to Cite

Thermal degradation and spectroscopy characterizations of TPS/PBAT blends irradiated by Cobalt-60 source. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 3, 2022. DOI: 10.15392/bjrs.v10i3.2046. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2046.. Acesso em: 24 nov. 2024.

Similar Articles

1-10 of 284

You may also start an advanced similarity search for this article.